The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.
Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.
Charged particle multiplicity as a function of pseudorapidity.
Charged particle multiplicity as a function of transverse momentum.
A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=2&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=2&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ < $500$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ > $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ > $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=2&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ < $200$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ > $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ > $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>
The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.
The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.
The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.
A search for a new pseudoscalar $a$-boson produced in events with a top-quark pair, where the $a$-boson decays into a pair of muons, is performed using $\sqrt{s} = 13$ TeV $pp$ collision data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of $139\, \mathrm{fb}^{-1}$. The search targets the final state where only one top quark decays to an electron or muon, resulting in a signature with three leptons $e\mu\mu$ and $\mu\mu\mu$. No significant excess of events above the Standard Model expectation is observed and upper limits are set on two signal models: $pp \rightarrow t\bar{t}a$ and $pp \rightarrow t\bar{t}$ with $t \rightarrow H^\pm b$, $H^\pm \rightarrow W^\pm a$, where $a\rightarrow\mu\mu$, in the mass ranges $15$ GeV $ < m_a < 72$ GeV and $120$ GeV $ \leq m_{H^{\pm}} \leq 160$ GeV.
Comparison between data and expected background for the on-$Z$-boson control region in the $e\mu\mu$ final state. The bins correspond to different jet and $b$-jet multiplicities. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.
Comparison between data and expected background for the on-$Z$boson control region in the $\mu\mu\mu$ final state. The bins correspond to different jet and $b$-jet multiplicities. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.
Di-muon mass distribution for the $e\mu\mu$ signal region for data and expected background. The expected signal distribution for $m_a = 35$ GeV is shown assuming $\sigma(t\bar{t}a)\times \text{Br}(a\rightarrow\mu\mu) = 4$ fb. Rare background processes include $ZZ+$jets, $WWZ$, $WZZ$, $ZZZ$, and $t\bar{t}t\bar{t}$.
A search for Majorana neutrinos in same-sign $WW$ scattering events is presented. The analysis uses $\sqrt{s}= 13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The analysis targets final states including exactly two same-sign muons and at least two hadronic jets well separated in rapidity. The modelling of the main backgrounds, from Standard Model same-sign $WW$ scattering and $WZ$ production, is constrained with data in dedicated signal-depleted control regions. The distribution of the transverse momentum of the second-hardest muon is used to search for signals originating from a heavy Majorana neutrino with a mass between 50 GeV and 20 TeV. No significant excess is observed over the background expectation. The results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model. In addition, the sensitivity to the Weinberg operator is investigated. Upper limits at the 95% confidence level are placed on the squared muon-neutrino-heavy-neutrino mass-mixing matrix element $\vert V_{\mu N} \vert^{2}$ as a function of the heavy Majorana neutrino's mass $m_N$, and on the effective $\mu\mu$ Majorana neutrino mass $|m_{\mu\mu}|$.
Observed and expected 95% CL upper limits on the heavy Majorana neutrino mixing element $\vert V_{\mu N} \vert^{2}$ as a function of $m_N$ in the Phenomenological Type-I Seesaw model.
Cutflow for a selection of signal samples used in this analysis. The flavour-aligned scenario (in which $\vert V_{\mu N} \vert^{2}=1$) is considered for heavy Majorana neutrino samples. The event yields include all correction factors applied to simulation, and is normalised to 140 fb$^{-1}$. The `Skim' selection requires 2 baseline muons and 2 jets satisfying the object definitions described in Section 3 and $m_{jj} > 150$ GeV. Uncertainties are statistical only.
Semi-visible jets, with a significant contribution to the event's missing transverse momentum, can arise in strongly interacting dark sectors. This results in an event topology where one of the jets can be aligned with the direction of the missing transverse momentum. The first search for semi-visible jets produced via a $t$-channel mediator exchange is presented. The analysis uses proton-proton collisions with an integrated luminosity of 139 fb$^{-1}$ and a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during the Run 2 of the LHC. No excess over Standard Model predictions is observed. Assuming a coupling strength of unity between the mediator, a Standard Model quark and a dark quark, mediator masses up to 2.7 TeV are excluded at the 95% confidence level. Upper limits on the coupling strength are also derived.
The post-fit yields in the nine bins of the $(p_\textrm{T}^{\textrm{bal}}, |\phi_{\textrm{max}} - \phi_{\textrm{min}}|)$ grid. Error band includes all the systematic uncertainties.
The post-fit distributions of HT for the SR. Data are compared with background predictions, and six signal predictions covering a representative mediator mass and invisible fraction range are overlaid. The uncertainties include all systematic and statistical components. The last bin contains the overflow.
The post-fit distributions of $E_{\text{T}}^{\text{miss}}$ for the SR. Data are compared with background predictions, and six signal predictions covering a representative mediator mass and invisible fraction range are overlaid. The uncertainties include all systematic and statistical components. The last bin contains the overflow.
This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a $Z \gamma$ pair in association with two jets. The analysis uses 140 fb$^{-1}$ of LHC proton-proton collision data taken at $\sqrt{s}$=13 TeV recorded by the ATLAS detector during the years 2015-2018. Events with a $Z$ boson candidate decaying into either an $e^+e^-$ or $\mu^+ \mu^-$ pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and a large rapidity gap between the two jets and is measured with an observed and expected significance well above five standard deviations. The fiducial $pp \rightarrow Z \gamma jj$ cross-section for the electroweak production is measured to be 3.6 $\pm$ 0.5 fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be $16.8^{+2.0}_{-1.8}$ fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions.
Post-fit mjj distributions in the mjj>500 GeV SR. The uncertainty band around the expectation includes all systematic uncertainties (including MC statistical uncertainty) and takes into account their correlations as obtained from the fit. The error bar around the data points represents the data statistical uncertainty. Events beyond the upper limit of the histogram are included in the last bin.
Post-fit mjj distributions in the mjj>500 GeV CR. The uncertainty band around the expectation includes all systematic uncertainties (including MC statistical uncertainty) and takes into account their correlations as obtained from the fit. The error bar around the data points represents the data statistical uncertainty. Events beyond the upper limit of the histogram are included in the last bin.
Post-fit mjj distributions in the mjj>150 GeV Extended SR. The uncertainty band around the expectation includes all systematic uncertainties (including MC statistical uncertainty) and takes into account their correlations as obtained from the fit. The error bar around the data points represents the data statistical uncertainty. Events beyond the upper limit of the histogram are included in the last bin.
Results from a wide range of searches targeting different experimental signatures with and without missing transverse momentum ($E_{\mathrm{T}}^{\mathrm{miss}}$) are used to constrain a Two-Higgs-Doublet Model (2HDM) with an additional pseudo-scalar mediating the interaction between ordinary and dark matter (2HDM+$a$). The analyses use up to 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider during 2015-2018. The results from three of the most sensitive searches are combined statistically. These searches target signatures with large $E_{\mathrm{T}}^{\mathrm{miss}}$ and a leptonically decaying $Z$ boson; large $E_{\mathrm{T}}^{\mathrm{miss}}$ and a Higgs boson decaying to bottom quarks; and production of charged Higgs bosons in final states with top and bottom quarks, respectively. Constraints are derived for several common and new benchmark scenarios in the 2HDM+$a$.
Observed combination limits at 95% CL in the $(m_{a},m_{A})$ plane under the assumption of $sin\theta$ = 0.35.
Expected combination limits at 95% CL in the $(m_{a},m_{A})$ plane under the assumption of $sin\theta$ = 0.35.
1 sigma band of expected combination limits at 95% CL in the $(m_{a},m_{A})$ plane under the assumption of $sin\theta$ = 0.35.
Searches for new resonances are performed using an unsupervised anomaly-detection technique. Events with at least one electron or muon are selected from 140 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded by ATLAS at the Large Hadron Collider. The approach involves training an autoencoder on data, and subsequently defining anomalous regions based on the reconstruction loss of the decoder. Studies focus on nine invariant mass spectra that contain pairs of objects consisting of one light jet or $b$-jet and either one lepton ($e$, $\mu$), photon, or second light jet or $b$-jet in the anomalous regions. No significant deviations from the background hypotheses are observed.
Distributions of the anomaly score from the AE for data and five benchmark BSM models. Their legends, from top to bottom, are; (1) charged Higgs boson production in association with a top quark, $tbH^{+}$ with $H^{+} \rightarrow t\bar{b}$; (2) a Kaluza-Klein gauge boson, $W_{KK}$, with the SM $W$ boson and a radion $\phi$; (3) a $Z'$ boson decaying to a composite lepton $E$ and $\ell$, with $E \rightarrow Z\ell$ with a mass of 0.5 TeV; (4) the SSM $W$'$\rightarrow W Z' \rightarrow \ell\nu q\bar{q}$; (5) a simplified dark-matter model with an $Z$ axial-vector mediator $Z' \rightarrow q\bar{q}$, where one of the quarks radiates a $W$ boson decaying to $\ell\nu$. The BSM predictions represent the expected number of events from 140 $fb^{-1}$ of data for heavy particle ($H^{+}$ ,$W_{KK}$ , $Z'$ , $W'$ and $Z'$, respectively) masses around 2 TeV. The distributions for the BSM models are smoothed to remove fluctuations due to low MC event counts. The vertical lines indicate the start of the three anomaly regions (ARs). The labels of the three ARs indicate the visible cross section for hypothetical processes yielding the same number of events as observed in the 140 $fb^{-1}$ dataset. The AE is applied to preselected events without any requirements on invariant mass distributions.
Invariant mass distributions of jet+Y for $M_{jY}$ > 0.3 TeV in the 10 pb AR along with the fit of Eq. (1). The fits are represented by the lines, while the associated statistical uncertainties are indicated by the shaded bands. The lower panels show the bin-by-bin significances of deviations from the fit, calculated as $(d_{\textit{i}} - f_{i})/\delta_{\textit{i}}$, where $d_{i}$ is the data yield, $f_{\textit{i}}$ is the fit value, and $\delta_{i}$ is the data uncertainty in the $\textit{i}$-th bin.
Values of $\Delta Z$ for the discovery sensitivity, as defined in the text, as a function of the invariant mass $\textit{m}$. The j+j invariant mass distribution is calculated in the 10 pb AR. Positive percentages indicate improvements in sensitivity. Horizontal dashed lines are drawn at 100% and 200% to guide the eye. The five benchmark BSM models are (1) charged Higgs boson production in association with a top quark, $tbH^{+}$ with $H^{+} \rightarrow t\bar{b}$; (2) a Kaluza-Klein gauge boson, $W_{KK}$, with the SM $W$ boson and a radion $\phi$; (3) a $Z'$ boson decaying to a composite lepton $E$ and $\ell$, with $E \rightarrow Z\ell$; (4) the sequential standard model $W' \rightarrow W Z' \rightarrow \ell\nu q\bar{q}$; (5) a simplified dark-matter model with an axial-vector mediator $Z' \rightarrow q\bar{q}$, where one of the quarks radiates a $W$ boson decaying to $\ell\nu$. The multiple markers shown for the composite-lepton model at the same invariant mass values correspond to different composite lepton ($E$) masses between 0.25 and 3.5 TeV. The center positions of the markers are set to the masses of the corresponding heavy particles.