We have measured the Wolfenstein triple-scattering parameters R, D, and A′ at 1.9 GeV for p−p scattering at 90° in the c.m. system. We find that R=0.11±0.16, A′=−0.54±0.16, and D=0.91±0.21, where these parameters are defined in the c.m. system. The possibility of a vector character for the strong inter-actions is discussed. We conclude that neither a single vector-meson exchange nor a single pseudoscalar-meson exchange can account for the data. Spin effects are found to remain an important part of the nucleon-nucleon interaction at four-momentum transfer −t=1.8 (GeV/c)2.
'ALL'.
No description provided.
No description provided.
An experiment designed to study the π−p total neutral cross section and its breakdown into several channels has been performed at eleven incident pion momenta ranging from 654 to 1247 MeV/c. Angular distributions for the charge exchange π0 and for η0 production are given in terms of Legendre-polynomial expansion coefficients. Forward and backward differential cross sections are presented for the charge-exchange channel and comparisons with recent dispersion-relation predictions for the forward cross section are made.
No description provided.
No description provided.
No description provided.
We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.
No description provided.
No description provided.
No description provided.
We present complete results concerning the five reactions K − p → Λω , K − p → Λφ , K − p → Σ 0 ϱ and K − p → Σ 0 φ . The experimental data are well described by exchange mechanisms and the agreement with the SU(3) symmetry predictions is excellent.
FORWARD AND BACKWARD CROSS SECTIONS ARE FOR COS(THETA) > AND < 0. SLOPE DETERMINED FOR -TP = 0.2 TO 1.0.
AUTHORS ALSO GIVE CORRELATIONS OF LAMBDA POLARIZATION WITH THE MESON POLARIZATION.
No description provided.
Differential cross sections and density matrix elements are presented for K ∗− (890) and K ∗− (1400) produced in the reaction K − p→K O π − p at 3.95 GeV/ c . The cross sections are decomposed into contributions due to different exchange mechanisms.
No description provided.
No description provided.
No description provided.
We report a search for quasistable particles with anomalous charge or large mass produced by the interaction of 300-GeV protons at the National Accelerator Laboratory. Analyses of energy losses in a counter telescope lead to cross-section limits of 10−35 cm2 for particles with charges of e3 and 2e3 and 5×10−31 cm2 for charge-4e3 particles. Time-of-flight measurements gave cross-section limits of about 10−31 cm2 for the production of massive charged particles.
No description provided.
We observe an energy-dependent polarization of the Σ+ produced in the reaction π+n→K0Σ+ at incident beam momenta between 1.1 and 2.4 GeV/c. These data form a significant source of information on the Σ− polarization in the charge-symmetric reaction π−p→K+Σ−.
INTEGRATED OVER ALL PRODUCTION ANGLES.
No description provided.
We have studied η′ production using a π+ beam incident on deuterium in the 72-in. bubble chamber, with beam momenta from 1.1 to 2.4 GeVc. Cross sections for reactions leading to five- and six-pronged final states are presented. We observe η′ production in the reaction π+d→ppη′, with the decay mode η′→π+π−η. The cross section for π+n→pη′ (studied in the impulse approximation) is observed to rise to a maximum of about 100 μb at 2.2-GeV c.m. energy. The production angular distribution develops peripheral peaking with increasing energy.
No description provided.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.
We present new data on the reaction K−p→Λη from 0.80 to 1.84 GeV/c. An interpretation is attempted in terms of the formation of known hyperon resonances.
THE ORIGINAL DATA AT 49 MOMENTA HAVE BEEN GROUPED INTO 27 MOMENTUM BANDS. SIG = 4*PI*(REDUCED CM K- WAVELENGTH)**2*LEG(L=0).
DATA FURTHER GROUPED INTO 9 MOMENTUM REGIONS.
DATA FURTHER GROUPED INTO 9 MOMENTUM REGIONS.