This work extends our previous investigations at the CERN Intersecting Storage Rings, with improved statistics at three different energies, wider angular range and a better control over systematic errors. Values for the (diffraction) shape parameter b are given.
No description provided.
No description provided.
No description provided.
The absolute luminosity of the CERN Intersecting Storage Rings has been determined by the Van der Meer method. Combining the measurement with small angle proton-proton elastic events, we find σ elastic = (6.8±0.6)mb.
No description provided.
Small angle elastic scattering events have been observed at the CERN Intersecting Storage Rings. Directions of both particles as well as the collision vertex are reconstructed with the help of four sets of spark chambers, two for each of the two arms. The elastic nature of the events is demonstrated by a collinearity requirement. We find values for the (diffraction) slope parameter in disagreement with the simple linear extrapolation of lower energy (Surpukov) data.
NUMBER OF EVENTS 87364.
NUMBER OF EVENTS 8305.
No description provided.
The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section sigma_DD =(116 +- 25) mub for events where both diffractive systems have 4.7 <|eta|_min < 6.5 .
Visible double diffractive cross-section measurements in the forward region. See paper for details of the nomenclature.
True eta_min corrected double diffractive cross-section measurements in the forward region. See paper for details of the nomenclature.
3roton-antiproton elastic scattering at cm energy 540 GeV has been studied in the t range 0.14 ⩽ − t ⩽ 0.26 GeV 2 . The data is well fitted by an exponential form exp( bt ) with b = 13.3 ± 1.5 GeV −2 .
Elastic Differentiaol Cross Section (545 events). DATA REQUESTED 21 FEB 1983. Data read from plot in paper (29 JAN 2015).
No description provided.
The TOTEM experiment has made a precise measurement of the elastic proton-proton differential cross-section at the centre-of-mass energy sqrt(s) = 8 TeV based on a high-statistics data sample obtained with the beta* = 90 optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027 < |t| < 0.2 GeV^2 with a significance greater than 7 sigma. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-section estimates of (101.5 +- 2.1) mb and (101.9 +- 2.1) mb, respectively, in agreement with previous TOTEM measurements.
The elastic differential cross-section as determined in this analysis using the ''optimised'' binning.
Proton-antiproton elastic scattering at CM energy 540 GeV has been studied in the t -range 0.04 < − t < 0.45 GeV 2 . The data are well fitted by the form exp ( bt ) with b = 17.1 ± 1.0 GeV −2 for | t | = 0.04 − 0.18 GeV su 2 and b = 13.7 ± 0.2 ± 0.2 GeV −2 for | t | = 0.21−0.45 GeV 2 . A luminosity measurement combined with the optical theorem gives σ tot = 67.6 ± 5.9 ± 2.7 mb and σ e1 / σ tot = 0.209 ± 0.018 ± 0.008.
No description provided.
No description provided.
ELASTIC RATIO ASSUMES RHO=0.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
We have carried out a partial-wave analysis (PWA) of three-pion systems produced in the coherent dissociation of π+ mesons on nuclear targets. The data have been analyzed for copper and lead targets at an incident π+ energy of 202.5 GeV. This PWA provides further evidence for resonant contributions to JP=1+ and 0− waves at 3π masses below 1.5 GeV, which can be plausibly identified with A1 and π′ mesons. The contribution from electromagnetic production of the A2 has also been extracted, and an estimate for Coulomb production and radiative width of the A1 has been obtained.
No description provided.
We have carried out a systematic study of the coherent dissociation of pions into 3 pions using nuclear targets. The experiment was performed at Fermilab using a high resolution forward spectrometer. Data were taken with carbon, copper and lead targets at an incident momentum of 202.5 GeV/c. Results are presented on momentum transfers, 3-pion masses, and on the nuclearA-dependence of the production cross section.
No description provided.
No description provided.
No description provided.