Date

Inelastic electron proton scattering at high momentum transfers

Albrecht, W. ; Brasse, F.W. ; Dorner, H. ; et al.
Phys.Lett.B 28 (1968) 225-228, 1968.
Inspire Record 56843 DOI 10.17182/hepdata.29077

Inelastic electron proton scattering has been measured by detecting the scattered electron, thus obtaining the total absorption cross section for virtual photons. Two complete spectra from threshold to a pion nucleon mass of W = 2 GeV were taken at θ e = 48.3° and fixed primary energies of 3.963 GeV and 5.159 GeV, respectively, corresponding to a momentum transfer at the first resonance of q 2 = 3.98 (GeV/ c ) 2 and q 2 = 5.84 (GeV/ c ) 2 . In addition, a measurement at θ e = 47.9° and at a primary energy of 3.306 GeV in the region of the first resonance is reported.

1 data table

No description provided.


High-Energy Inelastic e p Scattering at 6-Degrees and 10-Degrees

Bloom, Elliott D. ; Coward, D.H. ; DeStaebler, H.C. ; et al.
Phys.Rev.Lett. 23 (1969) 930-934, 1969.
Inspire Record 54874 DOI 10.17182/hepdata.21635

Cross sections for inelastic scattering of electrons from hydrogen were measured for incident energies from 7 to 17 GeV at scattering angles of 6° to 10° covering a range of squared four-momentum transfers up to 7.4 (GeV/c)2. For low center-of-mass energies of the final hadronic system the cross section shows prominent resonances at low momentum transfer and diminishes markedly at higher momentum transfer. For high excitations the cross section shows only a weak momentum-transfer dependence.

9 data tables

Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).

Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).

Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).

More…

Inelastic electron-Proton Scattering at Large Momentum Transfers

Miller, Guthrie ; Bloom, Elliott D. ; Buschhorn, G. ; et al.
Phys.Rev.D 5 (1972) 528, 1972.
Inspire Record 67123 DOI 10.17182/hepdata.22355

Differential cross sections for electrons scattered inelastically from hydrogen have been measured at 18°, 26°, and 34°. The range of incident energy was 4.5 to 18 GeV, and the range of four-momentum transfer squared was 1.5 to 21 (GeVc)2. With the use of these data in conjunction with previously measured data at 6° and 10°, the contributions from the longitudinal and transverse components of the exchanged photon have been separately determined. The values of the ratio of the photoabsorption cross sections σSσT are found to lie in the range 0 to 0.5. The question of scaling of 2MpW1 and νW2 as a function of ω is discussed, and scaling is verified for a large kinematic range. Also, a new scaling variable which reduces to ω in the Bjorken limit is introduced which extends the scaling region. The behavior of σT and σS is also discussed as a function of ν and q2. Various weighted sum rules of νW2 are evaluated.

18 data tables

Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).

Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).

Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).

More…

Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…

Inelastic electron proton scattering at small four-momentum transfers as a test of finite-energy sum rules

Moritz, J. ; Schmidt, K.H. ; Wegener, D. ; et al.
Nucl.Phys.B 41 (1972) 336-352, 1972.
Inspire Record 75163 DOI 10.17182/hepdata.45250

The twofold differential cross section for the inelastic scattering of electrons on protons wa was measured as a function of the scattered electron energy for an electron scattering angle of 12°. The kinematic region covered in this experiment was 0.3 (GeV/ c ) 2 < q 2 < 1.0 (GeV/ c ) 2 and W < 2.9 GeV. The Bloom-Gilman as well as the constant scattering angle sum rule of Rittenberg and Rubinstein were tested.

5 data tables

Axis error includes +- 0.0/0.0 contribution (3.7 TO 5////UNCERTAINTIES IN TARGET DENSITY, TARGET DIAMETER, SOLID ANGLE, E- SCATTERING ANGLE, INCIDENT E- ENERGY, DEAD TIME CORRECTIONS, CONSTANT OF FARADAY-CUP INTEGRATOR EFFICIENCY OF SPARK CHAMBERS, RADIATIVE CORRECTIONS).

Axis error includes +- 0.0/0.0 contribution (3.7 TO 5////UNCERTAINTIES IN TARGET DENSITY, TARGET DIAMETER, SOLID ANGLE, E- SCATTERING ANGLE, INCIDENT E- ENERGY, DEAD TIME CORRECTIONS, CONSTANT OF FARADAY-CUP INTEGRATOR EFFICIENCY OF SPARK CHAMBERS, RADIATIVE CORRECTIONS).

Axis error includes +- 0.0/0.0 contribution (3.7 TO 5////UNCERTAINTIES IN TARGET DENSITY, TARGET DIAMETER, SOLID ANGLE, E- SCATTERING ANGLE, INCIDENT E- ENERGY, DEAD TIME CORRECTIONS, CONSTANT OF FARADAY-CUP INTEGRATOR EFFICIENCY OF SPARK CHAMBERS, RADIATIVE CORRECTIONS).

More…

Vector Meson Production by Polarized Photons at 2.8-GeV, 4.7-GeV, and 9.3-GeV

Ballam, Joseph ; Chadwick, G.B. ; Eisenberg, Y. ; et al.
Phys.Rev.D 7 (1973) 3150, 1973.
Inspire Record 73602 DOI 10.17182/hepdata.43496

We present results on vector-meson photoproduction via γp→Vp in the LBL-SLAC 82-in. hydrogen bubble chamber exposed to a linearly polarized photon beam at 2.8, 4.7, and 9.3 GeV. We find ρ0 production to have the characteristics of a diffractive process, i.e., a cross section decreasing slowly with energy and a differential cross section with slope of ∼ 6.5 GeV−2. Within errors the ρ0 production amplitudes are entirely due to natural-parity exchange. s-channel helicity is conserved to a high degree in the γ→ρ0 transition. We find evidence for small helicity-flip amplitudes for ππ pairs in the ρ0 region. Photoproduction of ω mesons is separated into its natural- (σN) and unnatural- (σU) parity-exchange contributions. The Eγ and t dependence and the spin density matrix of the unnatural-parity-exchange contribution are consistent with a one-pion-exchange process. The natural-parity-exchange part has characteristics similar to ρ0 production. At 9.3 GeV the ratio of σ(ρ0) to σN(ω) is ∼ 7. The slope of the φ differential cross section is ∼ 4.5 GeV−2, smaller than that of ρ0 and ω production. Natural-parity exchange is the main contributor to φ production. No evidence for higher-mass vector mesons is found in ππ, πππ, or KK¯ final states. The s and t dependences of Compton scattering as calculated from ρ, ω, and φ photoproduction using vector-meson dominance agree with experiment, but the predicted Compton cross section is too small by a factor of 2.

47 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of rho0 on hydrogen with tagged photons between 4 and 6 gev

Struczinski, W. ; Dittmann, P. ; Eckardt, V. ; et al.
Nucl.Phys.B 47 (1972) 436-444, 1972.
Inspire Record 84477 DOI 10.17182/hepdata.29528

We have measured the reaction γ p → p π + π − in the DESY 1 m Streamer Chamber. The dominant ϱ o production is analyzed in terms of various models.

6 data tables

No description provided.

FOR ALL EVENTS.

FOR ALL TWO PION EVENTS.

More…

Inelastic electron Scattering from Hydrogen at 50-Degrees and 60-Degrees

Atwood, W.B. ; Bloom, Elliott D. ; Cottrell, R.Leslie ; et al.
Phys.Lett.B 64 (1976) 479-482, 1976.
Inspire Record 108900 DOI 10.17182/hepdata.18790

Inelastic electron scattering cross sections have been measured for four-momentum transfers between 4.1 GeV 2 and 30.5 GeV 2 . At the large scattering angles of this experiment, the dominant contribution to the cross section comes from the W 1 structure function. In the conventional scaling variables, x and x ′, this structure function does not exhibit scaling behavior, and at fixed x or x ′ it is found to decrease with increasing four-momentum transfer.

29 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Cross-sections and Asymmetry Parameters for the Production of Charged Pions From Various Nuclei by 585-{MeV} Protons

Crawford, J.F. ; Daum, M. ; Eaton, G.H. ; et al.
Phys.Rev.C 22 (1980) 1184-1196, 1980.
Inspire Record 143030 DOI 10.17182/hepdata.26362

We have measured the differential cross section d2σdΩdTπ and the polarization parameter P for the production of π+ and π− in various target nuclei (H1, H2, Be, C, O, Al, Ni, Cu, Mo, and Pb) by protons with a kinetic energy of 585 MeV, for production angles θπ=22.5°, 45°, 60°, 90°, and 135°, and for pion kinetic energies Tπ of 24, 35, 46, 88, 151, 192, and 254 MeV (all quantities in the laboratory system). Our data disagree strongly with recent data for 580-MeV protons. On the other hand, for pion energies up to 150 MeV, our cross sections differ little from those measured for a proton energy of 730 MeV. For nuclei with A>20, the total production cross sections σ(π+) and σ(π−) show the Z13 and N23 proportionality expected from theoretical arguments. There is evidence in our data of a shift of the π+ energy distributions compared to the π− distributions due to the effects of the Coulomb field of the nuclear protons on the emitted pions. NUCLEAR REACTIONS H1, H2, Be, C, O, Al, Ni, Cu, Mo, Pb p, π±, Tp=585 MeV; measured σ(Tπ, θπ) and asymmetry parameter P(Tπ, θπ).

3 data tables

No description provided.

No description provided.

No description provided.


Analysis of the Inclusive Reaction $\pi^- p \to K^*$ (890) X0 at 10-{GeV}/c

The Bari-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milan-Vienna collaboration Di Gennaro, V. ; Evangelista, C. ; Ghidini, B. ; et al.
Nucl.Phys.B 173 (1980) 107-126, 1980.
Inspire Record 153000 DOI 10.17182/hepdata.34495

Experimental results on the reaction π − p → K ∗0 (890) X 0 at 10 GeV /c are presented. By using the K ∗0 polarization measurements, a detailed study of the production has been carried out as a function of the missing mass squared and of the four-momentum trasnfer squared to the K ∗0 . We found that: (a) K ∗0 production is dominated by natural parity exchange; (b) K ∗0 helicity-zero production dominates the unnatural parity exchange contribution and (c) the main features of the reaction are in agreement with the predictions of the finite mass sum rules.

4 data tables

TO TAL (NATURAL+UNATURAL PARITY EXCHANGE) CROSS-SECTIONS.

NATURAL PARITY EXCHANGE CROSS-SECTIONS.

UNATURAL PARITY EXCHANGE CROSS-SECTIONS.

More…