Asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production $dN_{\rm ch}/d\eta$ in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow $v_{2}$ over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow.
Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.
The symmetric cumulant $sc_{2,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the electromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Single $\pi^0$ photoproduction off quasi-free nucleons from the deuteron was experimentally studied. Nuclear effects were investigated by a comparison of the results for free protons and quasi-free protons and used as a correction for the quasi-free neutron data. The experiment was performed at the tagged photon beam of the Mainz MAMI accelerator for photon energies between 0.45~GeV and 1.4~GeV, using an almost $4\pi$ electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Reaction model predictions and PWA for $\gamma n\rightarrow n\pi^{0}$, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. The results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.
Excitation function at cos(Theta_pi0)cm = -0.95
Excitation function at cos(Theta_pi0)cm = -0.85
Excitation function at cos(Theta_pi0)cm = -0.75
The cross sections for $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, R$_\mathrm{AA}$, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, R$_\mathrm{AA}$($\Upsilon$(1S)) $>$ R$_\mathrm{AA}$($\Upsilon$(2S)) $>$ R$_\mathrm{AA}$($\Upsilon$(3S)) . The suppression of $\Upsilon$(1S) is larger than that seen at $\sqrt{s_{_\mathrm{NN}}} =$ 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the R$_\mathrm{AA}$ of $\Upsilon$(3S) integrated over $p_\mathrm{T}$ and rapidity is 0.094 at 95% confidence level, which is the strongest suppression observed for any hadron species in heavy ion collisions to date.
Differential cross sections of the Y(1S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross sections of the Y(1S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross sections of the Y(2S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Measurements of the yield and nuclear modification factor, $R_\mathrm{ AA}$, for inclusive jet production are performed using 0.49 nb$^{-1}$ of Pb+Pb data at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV and 25 pb$^{-1}$ of $pp$ data at $\sqrt{s}=5.02$ TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-$k_t$ algorithm with radius parameter $R=0.4$ and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering $|y|<2.8$. The magnitude of $R_\mathrm{ AA}$ increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of $R_\mathrm{ AA}$ also increases towards peripheral collisions. The value of $R_\mathrm{ AA}$ is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.
The ⟨TAA⟩ and ⟨Npart⟩ values and their uncertainties in each centrality bin.
No description provided.
No description provided.
A measurement of the groomed jet mass in PbPb and pp collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC is presented. Jet grooming is a recursive procedure which sequentially removes soft constituents of a jet until a pair of hard subjets is found. The resulting groomed jets can be used to study modifications to the parton shower evolution in the presence of the hot and dense medium created in heavy ion collisions. Predictions of groomed jet properties from the PYTHIA and HERWIG++ event generators agree with the measurements in pp collisions. When comparing the results from the most central PbPb collisions to pp data, a hint of an increase of jets with large jet mass is observed, which could originate from additional medium-induced radiation at a large angle from the jet axis. However, no modification of the groomed mass of the core of the jet is observed for all PbPb centrality classes. The PbPb results are also compared to predictions from the JEWEL and Q-PYTHIA event generators, which predict a large modification of the groomed mass not observed in the data.
Groomed jet energy fraction in pp collision for jets with PTJET 160-180 GeV
Groomed jet energy fraction in PbPb collision for jets with PTJET 160-180 GeV
MG/PTJET for SD (0.1,0.0) in PP collision
This paper presents a measurement of jet fragmentation functions in 0.49 nb$^{-1}$ of Pb+Pb collisions and 25 pb$^{-1}$ of $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in $pp$ collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The pseudorapidity distributions of dijets as a function of their average transverse momentum ($p_\mathrm{T}^\text{ave}$) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all $p_\mathrm{T}^\text{ave}$ intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken $x$ in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.
The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $55 < p_{\mathrm{T}}^{\mathrm{ave}} < 75$ GeV.
The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $55 < p_{\mathrm{T}}^{\mathrm{ave}} < 75$ GeV.
The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $75 < p_{\mathrm{T}}^{\mathrm{ave}} < 95$ GeV.
A measurement of $J/\psi$ and $\psi(2\mathrm{S})$ production is presented. It is based on a data sample from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV and $pp$ collisions at $\sqrt{s}$ = 5.02 TeV recorded by the ATLAS detector at the LHC in 2015, corresponding to an integrated luminosity of $0.42\mathrm{nb}^{-1}$ and $25\mathrm{pb}^{-1}$ in Pb+Pb and $pp$, respectively. The measurements of per-event yields, nuclear modification factors, and non-prompt fractions are performed in the dimuon decay channel for $9 < p_{T}^{\mu\mu} < 40$ GeV in dimuon transverse momentum, and $-2.0 < y_{\mu\mu} < 2.0$ in rapidity. Strong suppression is found in Pb+Pb collisions for both prompt and non-prompt $J/\psi$, as well as for prompt and non-prompt $\psi(2\mathrm{S})$, increasing with event centrality. The suppression of prompt $\psi(2\mathrm{S})$ is observed to be stronger than that of $J/\psi$, while the suppression of non-prompt $\psi(2\mathrm{S})$ is equal to that of the non-prompt $J/\psi$ within uncertainties, consistent with the expectation that both arise from \textit{b}-quarks propagating through the medium. Despite prompt and non-prompt $J/\psi$ arising from different mechanisms, the dependence of their nuclear modification factors on centrality is found to be quite similar.
Per-event-yield of prompt jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.
Per-event-yield of non-prompt jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.
Non-prompt fraction of jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.
The PHENIX collaboration presents first measurements of low-momentum ($0.4
Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.
Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.
Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.