The inclusive process π++P→K¯ *0(890)+X is studied at 16 GeV/c using a 2-m streamer chamber containing a central liquid hydrogen target. From photographs triggered by detection of a forward K− meson, the signal K¯ K−*0π+ is extracted. The inclusive rate for K¯ * production into the forward hemisphere σ(xF>0.3) is 115±27 μb; the pT2 distribution is found to have a slope constant of 3.3±0.6 (GeV/c)2. The Feynman-x distribution for K¯ *0 is consistent with a Kuti-Weisskopf model in which the valence and sea quarks of the incident pion interact with only the sea quarks of the target proton.
No description provided.
No description provided.
We have measured the K0+K¯ 0 inclusive cross section in e+e− annihilation at 29 GeV with the Mark II detector SLAC PEP. We find 1.27±0.03±0.15 K0+K¯ 0 per hadronic event. We have also used time-of-flight particle identification to measure the K± rate over the momentum range 300–900 MeV/c.
Extrapolated to full momentum range by Monte-Carlo.
Statistical errors only.
No description provided.
Narrow states observable through the emission of monoenergetic charged pions have been searched for in p p annihilation at rest in a gaseous hydrogen target where annihilation from atomic angular momentum L = 1 states dominates. No structure is observed. The 5σ upper limit for the production of narrow states in the mass range 1100–1670 MeV is 2 × 10 −3 of all annihilations.
X means a narrow state.
A high-statistics measurement is presented of the cross section for the process e+e−→τ+τ− at s=29 GeV from the MAC detector at PEP. A fit to the angular distribution of our sample of 10 153 events with |cosθ|<0.9 gives an asymmetry Aττ=−0.055±0.012±0.005 from which we find the product of electron and tau axial-vector weak neutral couplings gAegAτ=0.22±0.05.
Data fully corrected up to O(ALPHA**3) radiative effects. Data requested from authors.
Data extrapolated to full acceptance.
No description provided.
A detailed account is given of high-precision measurements of the total hadronic cross sections of proton-antiproton and proton-proton interactions at centre-of-mass energies of 30.6, 52.8 and 62.7 GeV. The experiment was performed at the CERN Intersecting Storage Rings (ISR) using the total interaction-rate method, in which additive correction terms for trigger losses were held to less than 6% of the final result. An experimental determination of the vertical beam-displacement scale permitted luminosity-monitor calibrations to be made with high intrinsic accuracy. The overall precision (systematic and statistical errors combined) achieved in the total cross sections was ± 1.1% for proton-antiproton reactions and 0.7% for proton-proton reactions. In the proton-proton case the measurement was the most precise such measurement made at the ISR.
No description provided.
ERRORS CONTAIN BOTH STATISTICS AND SYSTEMATICS.
ERRORS CONTAIN POINT-TO-POINT AND THE ERROR-INDEPENDANT ERRORS.
We present measurements of the αα elastic scattering differential cross section at √ s = 126 GeV in the range 0.05 ⩽ ‖ t ‖
ERRORS ARE STATISTICAL ONLY.
EXPONENTIAL FIT TO CROSS SECTION BELOW T = 0.075 GEV**2.
OPTICAL THEOREM CALCULATION OF THE TOTAL CROSS SECTION ASSUMING RHO IS ZERO.
None
Backward Multiplicity.
Forward Multiplicity.
No description provided.
None
No description provided.
No description provided.
No description provided.
We present single inclusive π±, π0 andK± spectra in the forward fragmentation region (x>0.2,pT<1.5 GeV/c) as well as correlations between two charged particles. The data were recorded in an unseparated negative hadron beam at the CERN SPS using a large acceptance forward spectrometer. Our maasurements are compared in detail with several models which emphasise the role of the beam valence quarks in this production process. The connection to measurements at largepT is also investigated.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
None
NORMALISATION UNCERTAINTY IS 7 PCT.
NORMALISATION UNCERTAINTY IS 7 PCT.