We report final results on the polarization parameter P in elastic scattering of π − , K − and antiprotons at 40 GeV/ c incident momentum. The energy dependence of P (t) in π − p above 10 GeV/ c is well fitted by P (t) α s αR(t)-α P (t) where α R (t) are the effective Regge and Pomeron trajectories respectively. The data in K − p are compatible with exchange degeneracy. The results inp¯p show an important structure for |t|> 0.3 (GeV/c) 2 demonstrating the existence of a large helicity flip amplitude.
.
.
.
The spin rotation parameter R has been measured for elastic π − p scattering at 40 GeV/ c , at four momentum transfers t ranging from −0.19 to −0.52 (GeV/ c ) 2 . The average value within this interval is R π − p = -0.200± 0.023. The resulting constraints on the πN scattering amplitudes are discussed. The experiments also yields an average value for K − p scattering, R K − p scattering, R K − p = -0.16±0.16.
.
.
The polarization P in proton-proton elastic scattering has been measured at 3.83 GeV/ c for 0.35 ⩽ | t | ⩽ 3.0 (GeV/ c ) 2 , i.e. 29° ⩽ θ c.m. ⩽ 93°. The polarization shows a minimum at − ⋍ 1.0 ( GeV /c) 2 followed by a maximum at −⋍1.5 ( GeV /c) 2 . At the same energy the spin rotation parameter R has been measured in the interval 0.18 ⩽ | t | ⩽ 0.57 (GeV/ c ) 2 . Comparison with the results at 6.0 and 15.75 GeV/ c shows a similar t -dependence and the same average value at all three energies.
POLARIZED TARGET ASYMMETRY EQUALS RECOIL PROTON POLARIZATION BY TIME REVERSAL INVARIANCE.
'A'. 'B'. 'D'.
'A'. 'B'. 'C'. 'E'.
The spin rotation sf R in pp and π + p elastic scattering at 45 GeV/c has been measured at the Seppukhov accelarator, for z . sfnc ; t |; ranging from 0.2 to 0.5 (GeV/) 2 . The results are presented, together with previous R measurements at lower energies. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues in the pomeron exchange.
No description provided.
No description provided.
The polarization in π + p → π + p and K + p → K + p has been measured at 6 and 12 GeV/ c in the four-momentum transfer interval 0.1 ⩽ | t | ⩽ 2.0 (GeV/ c ) 2 by scattering on protons of a polarized deuteron target. Comparison with existing results obtained with polarized proton targets shows good general agreement and no evidence for asymmetry effects due to the presence of the spectator neutron. For K + p elastic scattering polarization the experiment yields improved statistics, especially at 6 GeV/ c
No description provided.
No description provided.
No description provided.
None
No description provided.
The polarization parameter P has been measured for elastic π + p, K + p and pp scattering at 45 GeV/c. Four-momentum transfer ranges from −0.08 to −1.1 (GeV/) 2 for pp, and from −0.08 to −0.9 (GeV/) 2 for π + p and K + p. The energy dependence of the polarization P ( t ) in π + p and in K + p above 6 GeV/c incident momentum is compatible with interference between pomeron and Regge poles. On the other hand, the polarization in p p elastic scattering decreases faster than ordinary Regge model predictions. This result can be explained by interference between non flip and flip amplitudes of the pomeron, leading to negative values for the polarization.
No description provided.
No description provided.
No description provided.
The differential cross sections for elastic π − p, K − p , p p and π + p, pp scattering at 39 and 44.5 GeV/ c , respectively, have been measured in the interval of momentum transfer squared 0.15 ≤ ovbt | ≤ 2 (GeV/ c ) 2 .
No description provided.
No description provided.
No description provided.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).