The kaon electroproduction reaction 1H(e,e'K+)Lambda was studied as a function of the virtual-photon four-momentum, Q2, total energy, W, and momentum transfer, t, for different values of the virtual- photon polarization parameter. Data were taken at electron beam energies ranging from 3.40 to 5.75 GeV. The center of mass cross section was determined for 21 kinematics corresponding to Q2 of 1.90 and 2.35 GeV2 and the longitudinal, sigmaL, and transverse, sigmaT, cross sections were separated using the Rosenbluth technique at fixed W and t. The separated cross sections reveal a flat energy dependence at forward kaon angles not satisfactorily described by existing electroproduction models. Influence of the kaon pole on the cross sections was investigated by adopting an off-shell form factor in the Regge model which better describes the observed energy dependence of sigmaT and sigmaL.
Measured values of the separated cross section at Q**2 = 2.35 GeV**2 and W = 1.85 GeV.. Errors contain both statistics and systematics.
Measured values of the separated cross section at Q**2 = 1.90 GeV**2.. Errors contain both statistics and systematics.
Measured values of the separated cross section at Q**2 = 2.35 GeV**2.. Errors contain both statistics and systematics.
We have made the first measurements of the virtual Compton scattering process via the e p -> e p gamma exclusive reaction at Q**2 = 1 GeV**2 in the nucleon resonance region. The cross section is obtained at center of mass (CM) backward angle, theta_gamma_gamma*, in a range of total (gamma* p) CM energy W from the proton mass up to W = 1.91 GeV. The data show resonant structures in the first and second resonance regions, and are well reproduced at higher W by the Bethe-Heitler+Born cross section, including t-channel pi0-exchange. At high W, our data, together with existing real photon data, show a striking Q**2 independence. Our measurement of the ratio of H(e,e'p)gamma to H(e,e'p)pi0 cross sections is presented and compared to model predictions.
Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 15 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.
Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 45 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.
Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 75 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.
Electroproduction of the omega meson was investigated in the p(e,e'p)omega reaction. The measurement was performed at a 4-momentum transfer Q2 ~ 0.5 GeV2. Angular distributions of the virtual photon-proton center-of-momentum cross sections have been extracted over the full angular range. These distributions exhibit a strong enhancement over t-channel parity exchange processes in the backward direction. According to a newly developed electroproduction model, this enhancement provides significant evidence of resonance formation in the gamma* p -> omega p reaction channel.
Differential cross section for an average W of 1.75 GeV.
Differential cross section for an average W of 1.79 GeV.
We have measured the neutron spin asymmetry $A_1^n$ with high precision at three kinematics in the deep inelastic region at $x=0.33$, 0.47 and 0.60, and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. Our results unambiguously show, for the first time, that $A_1^n$ crosses zero around $x=0.47$ and becomes significantly positive at $x=0.60$. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (pQCD) analyses based on the earlier data. However they deviate from pQCD predictions based on hadron helicity conservation.
Measured values of A1 and G1/F1.
We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized 3He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2 %.
Ratio of neutron magnetic form-factor to dipole value.
We present a study of Z +gamma + X production in p-bar p collisions at sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma (mumugamma) decay channel with the D0 detector at Fermilab. The event yield and kinematic characteristics are consistent with the Standard Model predictions. We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05, |h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale Lambda=750 GeV.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.
We have searched for first generation scalar leptoquark (LQ) pairs in the enu+jets channel using ppbar collider data (integrated luminosity= 115 pb^-1) collected by the DZero experiment at the Fermilab Tevatron during 1992-96. The analysis yields no candidate events. We combine the results with those from the ee+jets and nunu+jets channels to obtain 95% confidence level (CL) upper limits on the LQ pair production cross section as a function of mass and of beta, the branching fraction to a charged lepton. Comparing with the next-to-leading order theory, we set 95% CL lower limits on the LQ mass of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively.
The cross section values are extracted with the assumption that BR(LQ --> EQUARK) = 1/2.
We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb~(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
We present results from a search for anomalous WW and WZ production in ppbar collisions at sqrt(s) = 1.8 TeV. We used ppbar->evjjX events observed during the 1992-1993 run of the Fermilab Tevatron collider, corresponding to an integrated luminosity of 13.7 +- 0.7 pb^-1. A fit to the transverse momentum spectrum of the W boson yields direct limits on the CP-conserving anomalous WWgamma and WWZ coupling parameters of -0.9 < delta kappa < 1.1 (with lambda = 0) and -0.6 < lambda < 0.7 (with delta kappa = 0) at the 95% confidence level, for a form factor scale Lambda = 1.5 TeV, assuming that the WWgamma and WWZ coupling parameters are equal.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
The angular distributions of the reactions K - p → K - p and K - p → K K 0 n have been measured at 23 incident K - momenta between 1.136 and 1.798 ifGeV/c using the bubble chamber technique. These data, together with other published data on the same reactions, including K - p polarisations, K̄N total cross sections, and measurements of Re ƒ(0)/ Im ƒ(0) , have been analysed in terms of partial-wave amplitudes. Resonance behaviour is confirmed for the P 03 partial wave at 1890 MeV. The resonance parameters of the F 15 (1915), F 17 (2030) and G 07 (2100) have been redetermined. No evidence has been found for new resonances coupling significantly to K K N in the energy region explored.
No description provided.
No description provided.