Measurements of the inclusive jet cross section with the anti-kt clustering algorithm are presented for two radius parameters, R=0.5 and 0.7. They are based on data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to parton showers describe the data best.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 0 < |y| < 0.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 0.5 < |y| < 1. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 1 < |y| < 1.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at sqrt(s) = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range abs(eta) < 2.5, abs(eta) not in [1.44,1.57] and with an angular separation Delta R > 0.45, is 17.2 +/- 0.2 (stat.) +/- 1.9 (syst.) +/- 0.4 (lum.) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
Values of D(SIG)/DM(GAMMA GAMMA) for the data. The error given on each value is the total uncertainty.
Values of D(SIG)/DPT(GAMMA GAMMA) for the data. The error given on each value is the total uncertainty.
Values of D(SIG)/DDELTA(PHI(GAMMA GAMMA)) (pb/rad) for the data. The error given on each value is the total uncertainty.
In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, $x_\gamma^{\mathrm{meas}}$, contributing to the photon-jet final state. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges $6 < E_T^{\gamma} < 15$ GeV and $-0.7 < \eta^{\gamma} < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{\rm jet} < 35$ GeV and $-1.5 < \eta^{\rm jet} < 1.8$, for an integrated luminosity of 374 $\mathrm{pb}^{-1}$. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.
Differential cross-section D(SIG)/DET(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.
Differential cross-section D(SIG)/DETARAP(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.
Differential cross-section D(SIG)/DET(JET) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.
The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q^2 < 1000 GeV^2 using an integrated luminosity of 354 pb^{-1}. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q^2, Bjorken x, jet transverse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q^2. The running beauty-quark mass, m_b at the scale m_b, was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be 4.07 \pm 0.14 (fit} ^{+0.01}_{-0.07} (mod.) ^{+0.05}_{-0.00} (param.) ^{+0.08}_{-0.05} (theo) GeV.
Differential cross sections for inclusive jet production in beauty events as a function of ET(JET) for ET(JET) > 5 GeV. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.
Differential cross sections for inclusive jet production in charm events as a function of ET(JET) for ET(JET) > 4.2 GeV. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.
Differential cross sections for inclusive jet production in beauty events as a function of ETARAP(JET) for -1.6 < ETARAP(JET) < 2.2. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.
The photoproduction of $D^{*\pm}$ mesons has been measured with the ZEUS detector at HERA at three different ep centre-of-mass energies, $\sqrt{s}$, of 318, 251 and 225 GeV. For each data set, $D^*$ mesons were required to have transverse momentum, $p_T^{D^*}$, and pseudorapidity, $\eta^{D^*}$, in the ranges $1.9 < p_T^{D^*} < 20$ GeV and $|\eta^{D^*}|<1.6$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$. The dependence on $\sqrt{s}$ was studied by normalising to the high-statistics measurement at $\sqrt{s} =318$ GeV. This led to the cancellation of a number of systematic effects both in data and theory. Predictions from next-to-leading-order QCD describe the $\sqrt{s}$ dependence of the data well.
The cross sections for the production of D*+- mesons normalised to the HER data sample.
Pseudorapidity (eta) distributions of charged particles produced in proton-proton collisions at a centre-of-mass energy of 8 TeV are measured in the ranges abs(eta) < 2.2 and 5.3 < abs(eta) < 6.4 covered by the CMS and TOTEM detectors, respectively. The data correspond to an integrated luminosity of 45 inverse microbarns. Measurements are presented for three event categories. The most inclusive category is sensitive to 91-96% of the total inelastic proton-proton cross section. The other two categories are disjoint subsets of the inclusive sample that are either enhanced or depleted in single diffractive dissociation events. The data are compared to models used to describe high-energy hadronic interactions. None of the models considered provide a consistent description of the measured distributions.
Charged particle multiplicity (Inclusive) -- syst -- BB: bin-by-bin uncertainty.
Charged particle multiplicity (Non Single Diffractive dissociation (NSD) enhanced) -- syst -- BB: bin-by-bin uncertainty.
Charged particle multiplicity (Single Diffractive dissociation (SD) enhanced) -- syst -- BB: bin-by-bin uncertainty.
The reduced cross sections for $e^{+}p$ deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, $318$, $251$ and $225$ GeV. The cross sections, measured double differentially in Bjorken $x$ and the virtuality, $Q^2$, were obtained in the region $0.13\ \leq\ y\ \leq\ 0.75$, where $y$ denotes the inelasticity and $5\ \leq\ Q^2\ \leq\ 110$ GeV$^2$. The proton structure functions $F_2$ and $F_L$ were extracted from the measured cross sections.
The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=7 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.
The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=9 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.
The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=12 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.
A search for physics beyond the standard model in events with at least three leptons is presented. The data sample, corresponding to an integrated luminosity of 19.5 inverse femtobarns of proton-proton collisions with center-of-mass energy sqrt(s) = 8 TeV, was collected by the CMS experiment at the LHC during 2012. The data are divided into exclusive categories based on the number of leptons and their flavor, the presence or absence of an opposite-sign, same-flavor lepton pair (OSSF), the invariant mass of the OSSF pair, the presence or absence of a tagged bottom-quark jet, the number of identified hadronically decaying tau leptons, and the magnitude of the missing transverse energy and of the scalar sum of jet transverse momenta. The numbers of observed events are found to be consistent with the expected numbers from standard model processes, and limits are placed on new-physics scenarios that yield multilepton final states. In particular, scenarios that predict Higgs boson production in the context of supersymmetric decay chains are examined. We also place a 95% confidence level upper limit of 1.3% on the branching fraction for the decay of a top quark to a charm quark and a Higgs boson (t to c H), which translates to a bound on the left- and right-handed top-charm flavor-violating Higgs Yukawa couplings, lambda[H, tc] and lambda[H, ct], respectively, of sqrt(abs(lambda[H, tc])^2 + abs(lambda[H, ct])^2) < 0.21.
Observed and expected numbers of events with four or more leptons with the scalar sum of jet transverse momentum values HT > 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
Observed and expected numbers of events with four or more leptons with the scalar sum of jet transverse momentum values HT < 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
Observed and expected numbers of events with exactly three leptons with the scalar sum of jet transverse momentum values HT > 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton + jets decay channels using data corresponding to an integrated luminosity of 5.0 inverse femtobarns. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the t t-bar production is determined as a function of the additional jet multiplicity in the lepton + jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed.
Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 30 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.
Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 60 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.
Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 35 GeV in the lepton+jets channel. The statistical and main experimental and model systematic uncertainties are displayed.
A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a $b\bar{b}$ quark pair. The searches use the 8 TeV pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 inverse femtobarns. Certain channels include data from 7 TeV collisions corresponding to an integrated luminosity of 4.9 inverse femtobarns. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at $m_H$=125 GeV is found to be 0.58 (0.44) at 95% confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.
Summary of 95% CL upper limits on SIG*BR(HIGGS --> INVISIBLE)/SIG(SM) obtained from the VBF search, the combined ZH searches, and the combination of all three searches.