The elastic cross section for proton proton scattering at 11.75 GeV/ c was measured at the Argonne ZGS using a 50% polarized target. In the range p ⊥ 2 =0.6 → 2.2 (GeV/ c ) 2 we obtained precise measurements of d σ d t(ij) for the ⇈ ⇊, and ⇅ initial spin states perpendicular to the scattering plane. We confirmed that the asymmetry parameter, A , decreases with energy in the diffraction peak, but is approximately energy-independent at large p ⊥ 2 . We found that the spin correlation parameter c nn acquires rather dramatic structure, and at large p ⊥ 2 seems to grow with energy.
No description provided.
Based on a sample of about 3500 events, we have measured the total and differential cross sections of p p → n n in the 700–760 MeV/ c incident momentum region. It is found that σ CE = 10.7 ± 0.2 mb at the average momentum of 730 MeV/ c . The differential angular distribution is characterised by a sharp peak and a dip in the forward direction followed by a secondary maximum. The position of the dip corresponds to | t | ≈ m π 2 . These results are compared with the predictions of the model of Bryan-Phillips. On the other hand, this dip-bump structure can be well understood on a simple picture involving a π exchange and a constant background (for | t | ≲ 3 m π 2 ).
No description provided.
No description provided.
No description provided.
Elastic scattering of 32.1 GeV/ c K + on protons has been measured in a bubble chamber experiment. Results are presented in the momentum transfer interval 0.06–1.40 GeV 2 and compared with data at different energies. An effective Regge trajectory is calculated using K + p elastic data from 10 to 175 GeV/ c .
No description provided.
The Λ p total cross section has been measured in the Λ momentum range 4–14 GeV/c. The weighted mean of the cross section over this momentum interval is σ( Λ p) = 49.3 ± 3.7 mb for an average Λ momentum of 8.3 ± 2.7 GeV/ c . This value differs from the corresponding value for σ(Λp) measured previously by 14.5 ± 3.8 mb. Assuming a variation with Λ momentum, pΛ , of the form σ( Λ p) − σ(Λp) = σ 1pΛ − 1 2 , a value of σ 1 = 47 ± 10 mb GeV − 1 2 is obtained.
No description provided.
In an experiment with the 1.5 m bubble chamber at the Rutherford Laboratory, the reaction K + d→K 0 pp has been studied at beam momenta of 2.2, 2.45 and 2.7 GeV/ c . The cross section for the reaction K + n→K 0 p has been estimated and found to be approximately twice that of the line-reversed reaction K − p → K 0 n at comparable energies. An SU(3) sum rule, due to Barger and Cline, has been tested and found not to be valid in this momentum range. The differential cross section for K + n→K 0 p has also been measured and a determination made of the imaginary to real ratio of the forward amplitude, using the optical theorem. Implications of these, and other results, for various Regge models are briefly discussed.
No description provided.
No description provided.
None
No description provided.
In a streamer-chamber experiment at the Stanford Linear Accelerator Center, we observed hadron production in inelastic collisions of 14-GeV positive muons in a liquid hydrogen target. We report on the experiment, the analysis, and the resulting cross sections for hadronic prongs as well as the charged-hadron multiplicity distributions.
No description provided.
No description provided.
We report the 24-GeV/c inclusive π− yield near θc.m.=90° for 0.5<~PT≲2.2 GeV/c. No high-PT excess is seen at this energy. In addition we have obtained the inclusive γ-ray yield from a measurement of low-mass e+e− pairs. This yield is compared with that expected from π0-, η-, and ω-meson decay, to provide limits on possible direct photon production.
No description provided.
None
No description provided.
No description provided.
No description provided.
The inclusive cross sections for π − , π 0 , π + and η production in K − p interactions at 14.3 GeV/ c are calculated. The invariant cross section distributions are presented and compared in the whole phase space for π + and π 0 , and in the backward c.m. region for π − . In the fragmentation regions, the charged pion production is analysed in terms of the triple-Regge model.
No description provided.
No description provided.
No description provided.