The azimuthal distribution of identified pi^0 and inclusive photons has been measured in sqrt{s_{NN}} = 200 GeV Au+Au collisions with the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The second harmonic parameter (v_2) was measured to describe the observed anisotropy of the azimuthal distribution. The measured inclusive photon v_2 is consistent with the value expected for the photons from hadron decay and is also consistent with the lack of direct photon signal over the measured p_T range 1-6 GeV/c. An attempt is made to extract v_2 of direct photons.
The measured $v_2$ of $\pi^0$ ($v_2^{\pi^0}$) for 4 centrality selections.
The measured $v_2$ of inclusive photon ($v_2^{inclusive \gamma}$) for 4 centrality selections.
The expected photon $v_2$ from hadronic decay $v_2^{(b.g.)}$ and the subtracted $v_2$ quantity $R v_2^{(inclusive \gamma)}$ - $v_2^{(b.g.)}$.
J/psi production in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV has been measured by the PHENIX experiment at rapidities -2.2 < y < +2.4. The cross sections and nuclear dependence of J/\psi production versus rapidity, transverse momentum, and centrality are obtained and compared to lower energy p+A results and to theoretical models. The observed nuclear dependence in d+Au collisions is found to be modest, suggesting that the absorption in the final state is weak and the shadowing of the gluon distributions is small and consistent with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-based parameterizations that fit deep-inelastic scattering and Drell-Yan data at lower energies.
J/PSI differential cross section in P+P reactions( times di-lepton branching ratio B=5.9%) as a function of rapidity.
J/PSI nuclear modification factor RDA,as a function of rapidity.
Total cross-section for J/PSI production in P P reactions. The total cross section is estimated using a pythia calculation, normalized to our data. The di-lepton branching ratio used is 5.9%.The systematic error given is due to the fit. The choice of the PDF and model was estimated to have little impact in the value of the total cross section.
The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.
Invariant cross section vs. $p_T$ for the production of charged hadrons at mid-rapidity.
Mid-rapidity neutral pion transverse single-spin asymmetry, $A_N$, vs. transverse momentum.
Mid-rapidity charged hadron transverse single-spin asymmetry, $A_N$, vs. transverse momentum.
Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.
No description provided.
No description provided.
No description provided.
We present a measurement of the $\ttbar$ production cross section using $194 \mathrm{pb^{-1}}$ of CDF II data using events with a high transverse momentum electron or muon, three or more jets, and missing transverse energy. The measurement assumes 100% $t\to Wb$ branching fraction. Events consistent with $\ttbar$ decay are found by identifying jets containing heavy flavor semileptonic decays to muons. The dominant backgrounds are evaluated directly from the data. Based on 20 candidate events and an expected background of 9.5$\pm$1.1 events, we measure a production cross section of $5.3\pm3.3^{+1.3}_{-1.0} \mathrm{pb}$, in agreement with the standard model.
TTBAR production cross section.
The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.1 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.14 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.18 GeV.
Using 116.1 fb^-1 of data collected by the BABAR detector, we present an analysis of Xic0 production in B decays and from the ccbar continuum, with the Xic0 decaying into Omega- K+ and Xi- pi+ final states. We measure the ratio of branching fractions B(Xic0 -> Omega- K+)/B(Xic0 -> Xi- pi+) to be 0.294 +- 0.018 +- 0.016, where the first uncertainty is statistical and the second is systematic. The Xic0 momentum spectrum is measured on and 40 MeV below the Upsilon(4S) resonance. From these spectra the branching fraction product B(B -> Xic0 X) x B(Xic0 -> Xi- pi+) is measured to be (2.11 +- 0.19 +- 0.25) x 10^-4 and the cross-section product sigma(e+ e- -> Xic0 X) x B(Xic0 -> Xi- pi+) from the continuum is measured to be (388 +- 39 +- 41) fb at a center-of-mass energy of 10.58 GeV.
Measured cross section on the UPSILON(4S) resonance for the inclusive producton of XI/C0 times its branching ratio to XI- PI+.
Measured cross section on and off the UPSILON(4S) resonance for the inclusive producton of XI/C0 times its branching ratio to XI- PI+. with the off-resonacne data are scaled to a centre-of-mass energy of 10.580 GeV.
Total measured cross section for XI/C0 production for the continuum data scaled to a centre-of-mass energy of 10.580 GeV.
The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the interference terms sigma_TT and sigma_TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.
Total cross sections and interference terms (TT and TL).
Differential cross sections DSIG/DT for Q**2 = 1.725 GeV**2 and W = 2.77 GeV.
Differential cross sections DSIG/DT for Q**2 = 1.752 GeV**2 and W = 2.48 GeV.
We report on the first measurement of elliptic flow $v_2(p_T)$ of multi-strange baryons $\Xi+\bar{Xi}$ and $\Omega+\bar{Omega} in heavy-ion collisions. In minimum bias Au+Au collisions at sqrt(s_NN) = 200 GeV, a significant amount of elliptic flow, comparable to other non-strange baryons, is observed for multi-strange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The $p_T$ dependence of $v_2$ of the multi-strange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultra-relativistic nuclear collisions at RHIC.
$\Xi^{-} + \Xi^{+}$ invariant mass distribution from minimum bias (0–80%) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$\Omega^{-} + \Omega^{+}$ invariant mass distribution from minimum bias (0–80%) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Azimuthal distributions with respect to the event plane of the $\Xi^{-} + \Xi^{+}$ and $\Omega^{-} + \Omega^{+}$ raw yields.
We present results for two-particle transverse momentum correlations, <dpt,i dpt,j>, as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.
Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 20 GeV for the 5% most central collisions.
Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 62 GeV for the 5% most central collisions.
Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 130 GeV for the 5% most central collisions.