Energy spectra and angular distributions of protons emitted from the inclusive (d,xp) reaction on 9Be, 12C, 27Al, 58Ni, 93Nb, 181Ta, 208Pb, and 238U were measured at an incident deuteron energy of 100 MeV. The protons were detected at laboratory scattering angles of 6° to 120° and 8° to 120° for the targets with 9<~A<~27 and A>~58, respectively. Two triple-element and three double-element detector telescopes allowed for a low energy detection threshold of 4 to 8 MeV. The experimental results are presented in double-differential as well as angle- and energy-integrated cross sections. For all the nuclei studied, the energy spectra at forward angles show pronounced deuteron breakup peaks centered around approximately half of the incident deuteron energy. Qualitatively the energy spectra are similar for all nuclei at a given angle except in the region of the low-energy evaporation peak. As a function of target mass the evaporation cross sections are found to increase up to A=58 after which they decrease again. The total preequilibrium proton cross section is roughly (280±60)A1/3 mb. The angular distributions at the high emission energies are strongly forward peaked while the distributions of the low-energy protons are almost isotropic. The LAHET code system (LCS) was applied to calculate the proton production cross sections. Standard LCS calculations are found to underpredict the experimental cross sections at the very forward angles on the heavy target nuclei (A≳58). By adding incoherently the Coulomb breakup cross section of the deuteron to the LCS calculations the experimental cross sections are reproduced to within 10%. Although preequilibrium processes are a necessary ingredient in the LCS calculations of the large-angle cross sections, this code still fails to predict the experimental evaporation distributions.
All Cross Sections has errors 10 pct (for PB208 and U238 errors >10 pct) including systematic uncertainties. Tabulated proton multiplicities extracted from the experimental data by dividing proton cross section by reaction cross section using the empirical expression pi*(1.58A**(1/3)+.671*Ad**(1/3))**2 (taken from PR B348, 697).
None
No description provided.
No description provided.
No description provided.
The tensor analyzing power A yy in inclusive breakup of 9 GeV/c deuterons on carbon has been measured at the detected proton angle of 85 mr. The analyzing power remains positive at the highest measured momentum of the proton in definite contradiction with the predictions of the existing models. The vector analyzing power A y has been obtained simultaneously with A yy .
No description provided.
None
No description provided.
None
Proton momentum in deuteron rest frame (ANTILAB).
None
No description provided.