The angular distribution of 2720 tracks of 1085 hadronic final states produced from (e+e-) annihilation has been studied in the 1.2 to 3.0 GeV total centre-of-mass energy range. If we parametrize the angular distribution in terms off(θ) =1 + A cos2 θ, where 6 is the angle between the hadronic track produced and the colliding-beam direction, the results show thatA is less than 0.21, with 90% confidence.
ANGULAR DISTRIBUTION OF CHARGED HADRONS FOUND TO BE 1 + (0.07 +- 0.11)*(COS(THETA)**2).
The reactions e+e−→e+e− and e+e−→μ+μ− have been measured at center-of-mass energies 3.0, 3.8, and 4.8 GeV and production angles of 50°<θ<130° over all azimuthal angles. Agreement with quantum electrodynamics is excellent. New limits for cutoff parameters in quantum-electrodynamic-breakdown models are given.
No description provided.
No description provided.
We have measured the cross section, the distribution of scattering angles, and the distribution of noncoplanarity angles for electron-positron elastic scattering at 5 GeV c. m. energy. An analysis based on 230 events with scattering angles between 50 and 130° yields a ratio of the experimental to theoretical quantum-electrodynamic cross section of 1.03 ± 0.09. The scattering-angle and noncoplanarity-angle distributions are also found to be in excellent agreement with the quantum-electrodynamic predictions.
No description provided.
A sample of approximately 250 Λp interactions has been obtained in the Λ-hyperon momentum range of about 300 to 500 MeV/ c . An enhanced Λ-hyperon production rate was obtained by exposing an internally-mounted platinum target to the incident 1.5 GeV/ c meson beam. Cross sections and angular distributions are obtained for the reactions: Λ p → Λ p, Λ p → Σ o p and Λ p → Λ p π o . In the elastic channel, no strong evidence is seen near the Σ o p threshold for the presence of a 3 S 1 resonance, which has been reported, although there is some evidence for a small enhancement in this mass region. There is evidence for the presence of P-waves and probably also D-waves above about 800 MeV/ c , but not below this momentum.
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).