We have measured differential cross sections for the elastic scattering of charged pions from H3 and He3 into the backward hemisphere. Near the peak of the delta resonance, at Tπ=180 MeV, an angular distribution covering 114° to 168° in the laboratory extends our earlier measurements. At Tπ=142, 180, 220, and 256 MeV, we have measured an excitation function at angles approaching 170°. The cross sections for the reactions He3(π+,π+)3He, H3(π−,π−)3H show a rise at back angles which is not seen for He3(π−,π−)3He and H3(π+,π+)3H. There is a dip in the cross sections near 130° for Tπ=180 MeV.
No description provided.
No description provided.
No description provided.
We have conducted a search for bound states of a negative pion and a number of neutrons (pineuts) using the E814 spectrometer. A beam of Si28 at a momentum of 14.6A GeV/c was used to bombard targets of Al, Cu, Sn, and Pb. We describe our experimental technique, present measured upper limits for pineut production, and discuss the significance of our results.
AUTHORS NAMED CHARGED- BY PINEUT. Here ALL means the total number of interactions.
The polarization transfer κ 0 and the tensor analyzing power T 20 for the 1 H d p)d reaction have been measured up to an internal momentum of k = 0.58 GeV/c. Comparison of the same observables obtained in recent studies for 1 H d p)d reaction, as a function of k , show different behavior. However the data from these two reactions are almost identical when compared in T 20 versus κ 0 correlation plots. We discuss similarities and differences observed in the two reactions.
The authors use the Infinite Momentum Frame variable K= M( proton) * sqrt(1/(4*a*(1-a)) - 1), where a = (E(proton)+P_long(proton))/(E(deut)+P(deut)).
The annihilation p p → Φγ has been investigated with the Crystal Barrel detector at LEAR for antiprotons stopped in liquid hydrogen. The observed branching ratio BR ( p p → Φγ = (1.7 ± 0.4) · 10 −5 is almost two orders of magnitude higher than expected from the OZI-rule. As a by-product, the branching ratios BR ( p p → K L K S ) = (9.0 ± 0.6) · 10 −4 and BR ( p p → Φπ 0 ) = (5.5 ± 0.7) · 10 −4 have been measured.
No description provided.
None
No description provided.
The single spin asymmetry for inclusive direct-photon production has been measured using a polarized proton beam of 200 GeV/c with an unpolarized proton target at −0.15 < xf < 0.15 and 2.5 < pt < 3.1 GeV/c at Fermilab. The data on the cross section for pp → γX at 2.5 < pt < 3.8 GeV/c are also provided. The measurement was done using lead-glass calorimeters and photon detectors which surrounded the fiducial area of the calorimeters. Background rejection has been done using these surrounding photon detectors. The cross section obtained is consistent with the results of previous measurements assuming a nuclear dependence of A 1.0 . The single spin asymmetry, A N , for the direct-photon production is consistent with zero within experimental uncertainty.
No description provided.
No description provided.
The measurement of different reactions of p d annihilation at rest in a gaseous target has been performed using the OBELIX spectrometer at LEAR (CERN). A strong deviation from the OZI-rule prediction was found from the measurement of the ratio R = φπ ωπ in two regions of proton momenta, P < 200 MeV/ c and P > 400 MeV/ c : R( φπ − ωπ − ) = (133 ± 26) × 10 −3 and (113 ± 30) × 10 −3 , respectively. These values are about 30 times greater than the theoretical prediction. For the first time the excitation of the †-resonance was observed among the final-state products of p d annihilation. The existence of a broad enhancement in the 4π invariant mass at m ≈ 1480 MeV, seen in previous experiments, was confirmed. A ≈ 100 MeV downward shift of the bump position, when the proton momentum increased up to P > 400 MeV/ c , was also observed, while the positions of ω, ϱ and f 2 (1270) did not change with the proton momentum. The following branching ratios were measured: BR( p d → π − φ p ) = (6.62 ± 0.49) × 10 −4 , for P < 200 MeV/ c ; BR( p d → π − φ p ) = (0.95 ± 0.22) × 10 −4 , for P > 400 MeV/ c ; BR( p d → π − ω p ) = (49.7 ± 8.9) × 10 −4 , for P < 200 MeV/ c ; BR( p d → π − ω p ) = (8.38 ± 1.09) × 10 −4 , for P > 400 MeV/ c ; BR( p d → 2π − π + p ) = (150 ± 6) × 10 −4 , for P < 200 MeV/ c ; BR( p d → 2π − π + p ) = (16.6 ± 0.9) × 10 −4 , for P > 400 MeV/ c ; BR( p d → 3π − 2π + p ) = (326 ± 12) × 10 −4 , for P < 200 MeV/ c ; BR( p d → 3π − 2π + p ) = (44 ± 7) × 10 −4 , for P > 400 MeV/ c ; BR( p d → Λ K + π − ) = (0.96 ± 0.19) × 10 −4 , for P > 400 MeV/ c ; BR( p d → Λ K + π − π 0 ) = (3.5 ± 0.8) × 10 −4 , for P > 400 MeV/ c ; BR( p p → 2π − 2π + ) = (540 ± 20) × 10 −4 ; BR( p p → 3π − 3π + ) = (251 ± 21) × 10 −4 .
No description provided.
No description provided.
No description provided.
Data were obtained using the streamer chamber spectrometer SKM-200 at a momentum of 4.5 GeV/c per incident nucleon. From the analysis of angular distributions of pi - mesons the anisotropy coefficient a for He-Li, He-C, C-Ne, C-Cu, C-Pb, O-Pb and Mg-Mg collisions was obtained. It has been shown that a is similar for symmetric systems of nuclei (He-Li and Mg-Mg) and increases slowly with mass numbers of projectile (Ap) and target (AT) for other pairs of nuclei. The anisotropy coefficient a increases linearly with the kinetic energy E*kin (in the CMS) for all pairs of nuclei. The qualitative agreement of our results with the predictions of the intranuclear cascade models has been observed.
No description provided.
No description provided.
No description provided.
We detected 1–10 MeV neutrons at laboratory angles from 80° to 140° in coincidence with 470 GeV muons deep inelastically scattered from H, D, C, Ca, and Pb targets. The neutron energy spectrum for Pb can be fitted with two components with temperature parameters of 0.7 and 5.0 MeV. The average neutron multiplicity for 40<ν<400 GeV is about 5 for Pb, and less than 2 for Ca and C. These data are consistent with a process in which the emitted hadrons do not interact with the rest of the nucleus within distances smaller than the radius of Ca, but do interact within distances on the order of the radius of Pb in the measured kinematic range. For all targets the lack of high nuclear excitation is surprising.
The energy spectrum for neutrons emitted from a thermalized nucleus may be expressed as a multiplicity per unit energy d(M)/d(E)=(M/T**2)*E*exp(-E/T) in which E is the neutron energy, M is the total multiplicity (isotropic in the nuclear frame), and T is the nuclear temperature. A fit by the sum of two exponentials.
The considerable polarization of hyperons produced at high xF has been known for a long time and has been interpreted with various theoretical models in terms of the constituents' spin. Recently, the analyzing power in inclusive Λ0 hyperon production has also been measured using the 200GeV/c Fermilab polarized proton beam. The covered kinematic range is 0.2≤xF≤1.0 and 0.1≤pT≤1.5GeV/c. The data indicate a negative asymmetry at large xF and moderate pT. These results can further test the current ideas on the underlying mechanisms for hyperon polarization.
No description provided.
No description provided.
No description provided.