A search for supersymmetric electron production via the reaction e+e−→e±γ̃ẽ∓ followed by the decay ẽ∓→e∓γ̃ has been performed with the MAC detector at the electron-positron storage ring PEP. No candidates were found in a sample corresponding to an integrated luminosity of 36.4 pb−1. For a massless γ̃ this corresponds to a lower limit on the ẽ mass of 22.4 GeV/c2 at the 95% confidence level.
No description provided.
No description provided.
None
No description provided.
Data extrapolated to full solid angle.
Identification of muons in hadronic events from e+e− annihilation observed in the MAC detector at the storage ring PEP provides flavor tagging of heavy primary quarks. A sample enriched in events from bb¯ production is obtained and the b-quark fragmentation function is inferred from the momentum spectrum of the muons. The b quark is found to fragment predominantly with high values of z, with 〈zb〉=0.8±0.1, and to have an over-all semimuonic branching fraction of (15.5−2.9+5.4)%.
No description provided.
No description provided.
A measurement of the cross section for production of collinear muon pairs based upon a sample of about 3000 events observed in the MAC detector at the storage ring PEP is presented. From the angular asymmetry Aμμ=0.076±0.018 the axial-vector weak neutral coupling is found to be given by gAegAμ=0.31±0.08.
Data on non-collinearity and angular distribution.
Asymmetry measurement based on extrapolation of number of events to 4 PI acceptance.
High-statistics measurements of the absolute differential cross section for n−p scattering have been made over neutron c.m.-system scattering angles 9.5°<θ*<64.5°. The statistical error is 1.7 to 3.3% for 2°-wide angular bins, and the systematic error is 2.7 to 3.3%. The cross section is fitted by dσdΩ*=A exp(bt), with A=10.27±0.36 mb/sr, b=5.00±0.05, and 0.01<−t<0.39 (GeV/c)2. For the ratio of the real to the imaginary part of the forward-scattering amplitude we obtained αn>~−0.43±0.04, consistent with other less precise determinations of αn.
EXPONENTIAL FIT TO D(SIG)/DOMEGA OVER -T = 0.01 TO 0.39 GEV**2 (THETA = 9.5 TO 64.5 DEG).
None
THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.
REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
A very narrow resonance with a mass of 3.1 GeV/c2 is observed in the reaction n+Be→μ++μ−+X. The total cross section for this process, as well as its P⊥2 and x distribution, are given.
The cross section per nucleon times the branching ratio.
A very narrow resonance with a mass of 3.105 GeV/c2 is observed in the reaction γ+Be→μ++μ−+X. The total cross section for this process, as well as its t distribution, is given.
THIS IS CROSS SECTION PER BERYLLIUM NUCLEUS ASSUMING ONLY COHERENT OR QUASI-ELASTIC SCATTERING FROM A SINGLE NUCLEON. FORWARD DIFFERENTIAL CROSS SECTIONS QUOTED IN TABLE 1 OF T. NASH ET AL., PRL 36, 1233 (1976).
Differential cross sections are presented for pion-proton elastic scattering in the angular range −0.6≳cosθc.m.≳−0.98 at 15 incident π+ momenta from 2.18−5.25 GeVc. The angular distributions rise steeply near 180° at all momenta. For laboratory momenta ≳2.75 GeVc they show a minimum at u≈−0.17 (GeVc)2 and a broad maximum near u≈−0.6 (GeVc)2. When the data are plotted versus s, for fixed u, a strong signal from the Δ(2420) resonance is observed. The data are compared with a direct-channel resonance model and with a Regge model which considers the exchange of the Nα, Nγ, and Δδ Regge trajectories. The qualitative success of both the direct-channel resonance model and the Regge model lends support to the concept of duality.
No description provided.
No description provided.
No description provided.
This paper presents differential cross sections for backward π−p elastic scattering in the angular region −0.55≥cosθc.m.≥−0.98 for five incident momenta: 2.38, 2.50, 2.65, 2.80, and 3.00 GeV/c. The structure of the angular distribution undergoes a marked change over this momentum interval. A pronounced dip near 180°, which is seen for momenta ≲2.50 GeV/c, becomes a sharp peak at 2.80 and 3.00 GeV/c. A minimum in the cross section at cosθc.m.≃−0.7 is indicated at all momenta. In addition, a dip in the differential cross section appears at cosθc.m.≃−0.92 at 3.00 GeV/c. A good fit to the data from 2.1 to 3.0 GeV/c is obtained with a direct-channel resonance model.
No description provided.
No description provided.
No description provided.