Elastic $\rho~0$ photoproduction has been measured using the ZEUS detector at HERA. Untagged photoproduction events from $ep$ interactions were used to measure the reaction $\gamma p \rightarrow \rho~0 p$ ($\rho~0 \rightarrow \pi~+ \pi~-$) at photon-proton centre-of-mass energies between 60 and 80GeV and $|t|<0.5$GeV$~2$, where $t$ is the square of the four-momentum transferred at the proton vertex. The differential cross section $d\sigma/dM_{\pi\pi}$, where $M_{\pi\pi}$ is the invariant mass of the two pions, and the integrated cross section, $\sigma_{\gamma p\rightarrow \rho~0 p}$, are presented; the latter was measured to be $14.7\pm 0.4(\mbox{stat.})\pm2.4(\mbox{syst.})\mu\mbox{b}$. The differential cross section $d\sigma/dt$ has an approximately exponential shape; a fit of the type $A~{\prime}_{t} \exp{(-b~{\prime}_{t}|t| + c~{\prime}_{t} t~2)}$ yields a $t$-slope $b~{\prime}_{t}= 9.9\pm1.2(\mbox{stat.})\pm 1.4(\mbox{syst.})\mu\mbox{b}$. The results, when compared to low energy data, show a weak energy dependence of both $\sigma_{\gamma p\rightarrow \rho~0 p}$ and of the $t$-slope. The $\rho~0$ is produced predominantly with transverse polarisation, demonstrating that $s$-channel helicity conservation holds at these energies.
Integrated cross section for exclusive rho0 <pi+ pi-> production where 2Mpi < Mpi pi < Mrho + 5width0.
No description provided.
Applying the Spital and Yennie method to each t bin. No errors given.
The exclusive production of $\rho~0$ mesons in deep inelastic electron-proton scattering has been studied using the ZEUS detector. Cross sections have been measured in the range $7 < Q~2 < 25$ GeV$~2$ for $\gamma~*p$ centre of mass (c.m.) energies from 40 to 130 GeV. The $\gamma~*p \rightarrow \rho~0 p$ cross section exhibits a $Q~{-(4.2 \pm 0.8 ~{+1.4}_{-0.5})}$ dependence and both longitudinally and transversely polarised $\rho~0$'s are observed. The $\gamma~*p \rightarrow \rho~0 p$ cross section rises strongly with increasing c.m. energy, when compared with NMC data at lower energy, which cannot be explained by production through soft pomeron exchange. The data are compared with perturbative QCD calculations where the rise in the cross section reflects the increase in the gluon density at low $x$. the gluon density at low $x$.
No description provided.
Jet production in deep inelastic scattering for $120
2+1 jet rate as a function of ycut the jet algorithm cut-off value. Statistical errors only.
Measured values of Lambda-QCD in the MS Bar scheme and alpha_s as a function of Q**2. The second systematic uncertainty is related to the theoretical uncertainties .
Strong coupling constant alpha_s extrapolated to the Z0 mass.
We report on a measurement of the proton structure function $F_2$ in the range $3.5\times10~{-5}\leq x \leq 4\times10~{-3}$ and 1.5 ${\rm GeV~2} \leq Q~2 \leq15$ ${\rm GeV~2}$ at the $ep$ collider HERA operating at a centre-of-mass energy of $\sqrt{s} = 300$ ${\rm GeV}$. The rise of $F_2$ with decreasing $x$ observed in the previous HERA measurements persists in this lower $x$ and $Q~2$ range. The $Q~2$ evolution of $F_2$, even at the lowest $Q~2$ and $x$ measured, is consistent with perturbative QCD.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.
Photoproduction events which have two or more jets have been studied in the $W_{\gamma p}$ range 135GeV $< W_{\gamma p} <$ 280GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals ($\Delta\eta$) of up to four units and have transverse energies greater than 6GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300MeV. The fraction of events containing a gap is measured as a function of \deta. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of $\Delta\eta \sim 3$, then reaches a constant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.
No description provided.
No description provided.
A measurement of inclusive charged particle distributions in deep inelastic $ep$ scattering for $\gamma~* p$ centre-of-mass energies $75< W < 175$GeV and momentum transfer squared $10< Q~2 < 160$GeV$~2$ from the ZEUS detector at HERA is presented. The differential charged particle rates in the $\gamma~* p$ centre-of-mass system as a function of the scaled longitudinal momentum, $x_F$, and of the transverse momentum, $p_t~*$ and $<\!\!p_t~{*\,2}\!\!>\,\,$ , as a function of $x_F$, $W$ and $Q~2$ are given. Separate distributions are shown for events with (LRG) and without (NRG) a rapidity gap with respect to the proton direction. The data are compared with results from experiments at lower beam energies, with the naive quark parton model and with parton models including perturbative QCD corrections. The comparison shows the importance of the higher order QCD processes. Significant differences of the inclusive charged particle rates between NRG and LRG events at the same $W$ are observed. The value of $<\!\!p_t~{*\,2}\!\!>\,\,$ for LRG events with a hadronic mass $M_X$, which excludes the forward produced baryonic system, is similar to the $<\!\!p_t~{*\,2}\!\!>\,\,$ value observed in fixed target experiments at $W \approx M_X$.
Differential multiplicites for NRG events.. XL is parallel to the virtual photon axis.
Differential multiplicites for NRG events.. PT is relative to the virtual photon axis.
Mean PT**2 for NRG events.. PT is relative to the virtual photon axis.
The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$) at a median $Q~{2}$ of $10~{-4} \ \rm{GeV~2}$ has been studied with the ZEUS detector at HERA. The differential $\phi$ photoproduction cross section $d\sigma/dt$ has an exponential shape and has been determined in the kinematic range $0.1<|t|<0.5 \ \rm{GeV~2}$ and $60 < W < 80 \ \rm{GeV}$. An integrated cross section of $\sigma_{\gamma p \rightarrow \phi p} = 0.96 \pm 0.19~{+0.21}_{-0.18}$ $\rm{\mu b}$ has been obtained by extrapolating to {\it t} = 0. When compared to lower energy data, the results show a weak energy dependence of both $\sigma_{\gamma p \rightarrow \phi p}$ and the slope of the $t$ distribution. The $\phi$ decay angular distributions are consistent with $s$-channel helicity conservation. From lower energies to HERA energies, the features of $\phi$ photoproduction are compatible with those of a soft diffractive process.
.
Numerical values of dsig/dt distribution requested from authors.
Numerical values of dsig/dt distribution read from plot.
Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm
No description provided.
No description provided.
No description provided.
The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$), for $7 < Q~2 < 25$ GeV$~2$ and for virtual photon-proton centre of mass energies ($W$) in the range 42-134 GeV, has been studied with the ZEUS detector at HERA. When compared to lower energy data at similar $Q~2$, the results show that the $\gamma~*p \rightarrow \phid p$ cross section rises strongly with $W$. This behaviour is similar to that previously found for the $\gamma~*p \rightarrow \rho~0 p$ cross section. This strong dependence cannot be explained by production through soft pomeron exchange. It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small $x$. The ratio of $\sigma (\phi) / \sigma (\rho~0)$, which has previously been determined by ZEUS to be 0.065 $\pm$ 0.013 (stat.) in photoproduction at a mean $W$ of 70 GeV, is measured to be 0.18 $\pm $ 0.05 (stat.) $\pm$ 0.03 (syst.) at a mean $Q~2$ of 12.3 GeV$~2$ and mean $W$ of $\approx$ 100 GeV and is thus approaching at large $Q~2$ the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism.
No description provided.
Additional 32 PCT Systematic error.
Additional 32 PCT Systematic error.
Jet photoproduction, where the two highest transverse energy (ETjet) jets have ETjet above 6 GeV and a jet-jet invariant mass above 23 GeV, has been studied with the ZEUS detector at the HERA ep collider. Resolved and direct photoproduction samples have been separated. The cross section as a function of the angle between the jet-jet axis and the beam direction in the dijet rest frame has been measured for the two samples. The measured angular distributions differ markedly from each other. They agree with the predictions of QCD calculations, where the different angular distributions reflect the different spins of the quark and gluon exchanged in the hard subprocess.
Direct processes, XOBS >= 0.75.
Resolved processes, XOBS <= 0.75.