The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.
New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 4 GeV 2 < − t < 10 GeV 2 at the centre-of-mass energy of √ s = 53 GeV. The data have been obtained using the Split-Field Magnet detector at the CERN Intersecting Storage Rings. We observe another change of slope of the differential cross section near − t =6.5 GeV 2 .
NUMERICAL VALUES SUPPLIED BY K. WINTER.
We report on a study of the charge-exchange reaction pp → nΔ ++ (1232) at the CERN intersecting storage rings (ISR) in the energy range √ s = 23 to 53 GeV. From our analysis of the energy dependence of the total cross-section, of the differential cross-section d σ /d t and of the decay angular distributions we find evidence that pion exchange is dominant up to √ s = 23 GeV and that ( ϱ +A 2 ) exchange dominates the reaction for √ s ⩾ 30 GeV, as described by simple Regge-pole models.
THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.
THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.
No description provided.
New experimental results are reported on diffractive dissociation of protons into (nπ + ) in proton-proton collisions at a centre-of-mass energy of s = 45 GeV . The data were obtained using the Split-Field-Magnet detector at the CERN Intersecting Storage Rings. We have searched for resonance contributions and found peaks at mass values of 1.5 GeV, 1.65 GeV, and 2.1 GeV. A dip in d σ d t is observed at low t and low mass; it is most pronounced for events with neutrons emitted at 90° in the Gottfried-Jackson frame. The correlation between mass and slope depends strongly on θ J . The cross section of the channel pp → pnπ + is 400 ± 110 μb at s = 45 GeV , giving an energy dependence of s −0.30±0.07 for isospin exchange zero in this channel.
SCALE UNCERTAINTY 20 PCT IS INCLUDED IN ERROR.
EXTRAPOLATING TO T=0 AND ALLOWING FOR OTHER DECAY MODES YIELDS RESULT.
New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 0.8GeV 2 < − t < 9 GeV 2 at a centre-of-mass energy of √ s = 53 GeV. The data are obtained sing the Split-Field- Magnet Detector at the CERN Intersecting Storage Rings. The cross section has well-known minimum at − t = (1.34±0.02) GeV 2 but no further minimum or change of slope is observed between 2 and 6.5 GeV 2 .
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED ERRORS ARE THE QUADRATIC SUM OF STATISTICAL AND ESTIMATED SYSTEMATIC ERRORS. THE SYSTEMATIC ERRORS ARE NOT INDEPENDENT FROM BIN TO BIN).
A measurement of the cross section of the charge-exchange reaction pp→ Δ ++ (1232)n at √ s = 23, 31 and 45 GeV at the CERN-ISR is reported. The energy dependence continues to follow a power law p lab − n with n = 1.94 ± 0.03 indicating dominance of one-pion exchange at the lowest ISR energy; there is some evidence for deviation from this at the higher ISR energies.
No description provided.
No description provided.
No description provided.
Observation of 16 μ + μ − pairs of invariant mass greater than 2.7 GeV/ c 2 in the reaction pp → μ + μ − + anything at s = 52 GeV at the CERN Intersecting Storage Rings (ISR) is reported. These events can be interpreted as originating from J(3.1) decay into μ + μ − . Their p T distribution suggests a hadronic production. The cross section for J production is given and compared to the cross section for single lepton production. We conclude that J(3.1) production cannot fully account for single lepton production.
No description provided.
New experimental results are presented on proton-proton elastic scattering at centre-of-mass energies s =23 GeV and s =62 GeV . The data are obtained using the Split Field Magnet detector at the CERN Intersecting Storage Rings. The absolute differential cross-sections show an energy-dependent behaviour. The position of the diffraction minimum changes from t =(−1.44±0.02)GeV 2 at 23 GeV to (−1.26±0.03)GeV 2 at 62 GeV. The cross-section at the second maximum is increasing with s . The connection of these observations with the hypothesis of “geometrical scaling” is discussed.
63 K EVENTS.
380 K EVENTS.