Date

Five-pion final state in p p annihilations at 0.70 to 1.1 GeV/c

Burns, R.R. ; Condon, P.E. ; Donahue, J. ; et al.
Nucl.Phys.B 85 (1975) 337-353, 1975.
Inspire Record 1392678 DOI 10.17182/hepdata.32116

Results are reported on the reaction p p → π + π + π − π − π 0 at six lab momenta spanning the region from 0.686 to 1.098 GeV/ c . The cross section for this process drops from 20.3 ± 1.2 mb at 0.686 GeV/ c to 13 1.0 mb at 1.098 GeV/ c . Resonance production is determined by means of a model which includes Bose symmetrization, Breit-Wigner amplitudes and Bose-Einstein correlations for the like-charged pion pairs in the nonresonant part of the amplitude. The likelihood fit to the resonance channels yields about 0.8% ηππ , 12% ϱ ± πππ , 2% f πππ , 8% ω ππ , 22% ϱ ± ϱ 0 π , 13% ωϱ 0 and 9% ω f with errors on the order of a few percent. Several percent A 1 ± ππ and X(1440) π were also needed to obtain good fits. The ϱ 0 πππ and ϱ 0 ϱ 0 π channels as well as A 2 ππ and A 1 0 ππ are consistent with zero. Reasonable fits to the mass distributions are obtained. Production angular distributions are found to be essentially uniform. The angular correlations between pion pairs are approximately fit by the simple model of resonance production with Bose symmetrization.

2 data tables

Axis error includes +- 0.0/0.0 contribution.

Axis error includes +- 0.0/0.0 contribution.


Combination of Measurements of Inclusive Deep Inelastic $e^{\pm}p$ Scattering Cross Sections and QCD Analysis of HERA Data

The H1 & ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 75 (2015) 580, 2015.
Inspire Record 1377206 DOI 10.17182/hepdata.68951

A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.

9 data tables

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 318$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 300$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 251$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

More…

Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 03 (2015) 092, 2015.
Inspire Record 1332186 DOI 10.17182/hepdata.73124

A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4<Q^{2}<100 GeV^{2} and by the fractional proton longitudinal momentum loss x_pom<0.03. The resulting cross sections are compared with next-to-leading order QCD predictions based on diffractive parton distribution functions and the value of the strong coupling constant is extracted.

11 data tables

Integrated cross section in the measurement phase space.

Diffractive DIS dijet cross section measured differentially as a function of $Q^2$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two columns show the correction factors for hadronisation and QED radiation, respectively.

Diffractive DIS dijet cross section measured differentially as a function of $y$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two column show the correction factors for hadronisation and QED radiation, respectively.

More…

Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Spin density matrix elements in exclusive $\omega$ electroproduction on $^1$H and $^2$H targets at 27.5 GeV beam energy

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 74 (2014) 3110, 2014.
Inspire Record 1305286 DOI 10.17182/hepdata.70751

Exclusive electroproduction of $\omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q$^2$>1.0 GeV$^2$, 3.0 GeV < W < 6.3 GeV, and -t'< 0.2 GeV$^2$. Results on the angular distribution of the $\omega$ meson, including its decay products, are presented. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q$^2$ or -t'. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse $\omega$ production by longitudinal and transverse virtual photons, $\gamma^{*}_{L} \to \omega_{T}$ and $\gamma^{*}_{T} \to \omega_{T}$, is determined for the first time. A hierarchy of helicity amplitudes is established, which mainly means that the unnatural-parity-exchange amplitude describing the $\gamma^*_T \to \omega_T$ transition dominates over the two natural-parity-exchange amplitudes describing the $\gamma^*_L \to \omega_L$ and $\gamma^*_T \to \omega_T$ transitions, with the latter two being of similar magnitude. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions, which are of unnatural parity.

9 data tables

The 23 unpolarized and polarized $\omega$ SDMEs from the proton and deuteron data.

The 23 unpolarized and polarized $\omega$ SDMEs for the proton data in $Q^2$ intervals: $1.00 - 1.57 - 2.55 - 10.00$ GeV$^2$.

The 23 unpolarized and polarized $\omega$ SDMEs for the proton data in $-t'$ intervals: $0.000 - 0.044 - 0.105 - 0.200$ GeV$^2$.

More…

Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling alpha_s

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 75 (2015) 65, 2015.
Inspire Record 1301218 DOI 10.17182/hepdata.64353

Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.

20 data tables

Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

More…

Measurement of Feynman-$x$ Spectra of Photons and Neutrons in the Very Forward Direction in Deep-Inelastic Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 74 (2014) 2915, 2014.
Inspire Record 1288065 DOI 10.17182/hepdata.64481

Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic $ep$ scattering at HERA are presented as a function of the Feynman variable $x_F$ and of the centre-of-mass energy of the virtual photon-proton system $W$. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $131 \mathrm{pb}^{-1}$. The measurement is restricted to photons and neutrons in the pseudorapidity range $\eta>7.9$ and covers the range of negative four momentum transfer squared at the positron vertex $6<Q^2<100$ GeV$^2$, of inelasticity $0.05<y<0.6$ and of $70<W<245 $GeV. To test the Feynman scaling hypothesis the $W$ dependence of the $x_F$ dependent cross sections is investigated. Predictions of deep-inelastic scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

4 data tables

The fraction of DIS events with forward photons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

The fraction of DIS events with forward neutrons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

Normalised cross sections of forward photon production in DIS as a function of XF. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

More…

Measurement of Inclusive ep Cross Sections at High Q2 at sqrt(s) = 225 and 252 GeV and of the Longitudinal Proton Structure Function FL at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baghdasaryan, S. ; et al.
Eur.Phys.J.C 74 (2014) 2814, 2014.
Inspire Record 1269731 DOI 10.17182/hepdata.62536

Inclusive ep double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA. The data were taken with a lepton beam energy of 27.6 GeV and two proton beam energies of Ep = 460 and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of 6.5 *10^{-4}<=x<= 0.65 for 35<=Q^2<=800 GeV^2 up to y = 0.85. The measurements are used together with previously published H1 data at Ep = 920 GeV and lower Q2 data at Ep = 460, 575 and 920 GeV to extract the longitudinal proton structure function FL in the region 1.5<=Q^2 <=800 GeV^2.

51 data tables

The neutral current reduced cross section at Q^2=35 GeV^2 for a proton energy of 460 GeV.

The neutral current reduced cross section at Q^2=45 GeV^2 for a proton energy of 460 GeV.

The neutral current reduced cross section at Q^2=60 GeV^2 for a proton energy of 460 GeV.

More…

Elastic and Proton-Dissociative Photoproduction of J/psi Mesons at HERA

The H1 collaboration Alexa, C. ; Andreev, V. ; Baghdasaryan, A. ; et al.
Eur.Phys.J.C 73 (2013) 2466, 2013.
Inspire Record 1228913 DOI 10.17182/hepdata.66507

Cross sections for elastic and proton-dissociative photoproduction of J/psi mesons are measured with the H1 detector in positron-proton collisions at HERA. The data were collected at $ep$ centre-of-mass energies sqrt{s} approx 318 GeV and sqrt{s} approx 225 GeV, corresponding to integrated luminosities of L = 130 pb^{-1} and L = 10.8 pb^{-1}, respectively. The cross sections are measured as a function of the photon-proton centre-of-mass energy in the range 25< Wgp < 110 GeV. Differential cross sections $\mathrm{d}\sigma / \mathrm{d}t$, where $t$ is the squared four-momentum transfer at the proton vertex, are measured in the range $|t| < 1.2 \, \gevsq$ for the elastic process and $|t| < 8 \, \gevsq$ for proton dissociation. The results are compared to other measurements. The $\Wgp$ and $t$-dependences are parametrised using phenomenological fits.

8 data tables

The elastic photoproduction cross section derived from the high-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

The proton-dissociative photoproduction cross section derived from the high-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

The elastic photoproduction cross section derived from the low-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

More…

Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

The H1 collaboration Alexa, C. ; Andreev, V. ; Baghdasaryan, A. ; et al.
Eur.Phys.J.C 73 (2013) 2406, 2013.
Inspire Record 1217865 DOI 10.17182/hepdata.62615

Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5<Q (2)<100 GeV(2), and small values of Bjorken-x, 10(−4)<x<10(−2). The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (η (∗)) and transverse momentum ( ) in the range 0<η (∗)<5 and in bins of x and Q (2). The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.

36 data tables

Charged particle density as a function of pseudorapidity for the PT range 0-1 GeV in the HCM frame.

Charged particle density as a function of pseudorapidity for the PT range 1-10 GeV in the HCM frame.

Charged particle density as a function of pseudorapidity for the PT interval 0-1 GeV in fixed Q**2 and X intervals in the HCM frame.

More…