We present results of measurements of the n−p total cross section between 30 and 280 GeV/c. The measurements were carried out with a neutron beam by using the standard transmission technique and a liquid-hydrogen target. A total-absorption calorimeter was used to determine the neutron energy. Our measurements, which have an accuracy of ∼1%, indicate a smooth rise of approximately 1.5 mb between 50 and 280 GeV/c. The combined n−p and p−p data above 20 GeV/c are well fitted by the expression σ=38.4+0.85|ln(s95)|1.47 mb.
MOST DATA TAKEN WITH 300 GEV/C INCIDENT PROTONS TO PRODUCE THE NEUTRON BEAM, WITH SOME ALSO USING 200 GEV/C PROTONS.
In an exposure of the chamber Mirabelle at the Serpukhov accelerator, 1 943 interactions at 50 GeV/ c and 8 959 at 69 GeV/ c have been observed. Topological cross sections and charged multiplicity distributions are presented. The average charged multiplicities found are respectively 5.32 ± 0.13 and 5.89 ± 0.07.
2PRONG INELASTIC CROSS SECTIONS DERIVED BY SUBTRACTION OF OTHER PRONG CROSS SECTIONS AND KNOWN ELASTIC MEASUREMENTS FROM THE TOTAL.