Prompt dimuon production has been measured. Events with mass up to 25 GeV/c2 are observed, as well as the J and ϒ resonances. Cross sections are given for J and ϒ production. For the continuum, the scaling function F(τ) is measured at very small values of τ=ms covering the range 0.05<τ<0.20.
No description provided.
HERE UPSILON = ALL USILON FAMILY. ANGULAR DISTBN. IS SEEN TO BE ISOTROPIC.
No description provided.
We present data on dimuon production by 16 GeV π + and π − beams on a Cu target. From the data we evaluate, for π − N collisions, the fraction of dimuon events that originate from the annihilation process q q ̄ → μ + μ − . Using this information the experimentally determined cross section for the process q q ̄ → μ + μ − is observed to be in agreement with the Drell-Yan model over a wide range of incident energies. The observed deviations from exact scaling are of the order predicted by QCD calculations for the Q 2 -dependence of the nucleon and the pion structure function.
CROSS SECTIONS ARE PER COPPER NUCLEUS.
CROSS SECTIONS ARE PER COPPER NUCLEUS.
We have performed a high-statistics experiment on the reaction π−p→K+K¯0π−n at 8.0 GeV/c. A Dalitz-plot analysis of the K+K¯0π− system finds that the D(1285) is a JPG=1++ state coupling predominantly to a δπ decay channel, while the E(1420) peak consists mostly of a JPG=0−+ wave with a substantial δπ decay mode. There is little evidence of a 1++ resonance at the E mass.
No description provided.
The reaction K − p → K − π − π + p has been measured at 25 and 40 GeV/ c at the Serpukhov Proton Accelerator. The production cross section at 25 and 40 GeV/ c as a function of momentum transfer and K ππ mass is presented, and results of the partial-wave analysis of the K ππ system yielding information about Q(1300), K ∗ (1400) and L(1770) mesons are discussed.
No description provided.
K** DEFINED BY 1.30 < M(K PI PI) < 1.54 GEV.
L IS DEFINED AS THE 2- STATE WITH 1.6 < M(K PI PI) < 1.9 GEV.
We have measured the reaction γ p → p π + π − in the DESY 1 m Streamer Chamber. The dominant ϱ o production is analyzed in terms of various models.
No description provided.
FOR ALL EVENTS.
FOR ALL TWO PION EVENTS.