Date

Angular correlations in three-jet events in ep collisions at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 85 (2012) 052008, 2012.
Inspire Record 793931 DOI 10.17182/hepdata.45283

Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of 127 pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different colour configurations. Fixed-order perturbative QCD calculations assuming the values of the colour factors C_F, C_A and T_F as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of colour configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N.

9 data tables

Integrated 3-jet photoproduction cross section.

Integrated 3-jet cross sections in NC DIS.

Normalized differential 3-jet photoproduction cross section as a function of THETA(H).

More…

Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 024906, 2009.
Inspire Record 791177 DOI 10.17182/hepdata.98972

We present measurements of net charge fluctuations in $Au + Au$ collisions at $\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $\nu_{+-{\rm,dyn}}$. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate $1/N_{ch}$ scaling, but display approximate $1/N_{part}$ scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

10 data tables

(Color online) Dynamical net charge fluctuations, $\nu_{+−,dyn}$, of particles produced within pseudorapidity $|\eta|$ < 0.5, as function of the number of participating nucleons.

(Color online) Corrected values of dynamical net charge fluctuations ($\nu^{corr}_{+−,dyn}$) as a function of $\sqrt{s_{NN}}$. See text for details.

(Color online) Dynamical net charge fluctuations, $\nu_{+−,dyn}$, of particles produced with pseudorapidity $|\eta|$ < 0.5 scaled by (a) the multiplicity, $dN_{ch}/d\eta$. The dashed line corresponds to charge conservation effect and the solid line to the prediction for a resonance gas, (b) the number of participants, and (c) the number of binary collisions.

More…

System-size independence of directed flow at the Relativistic Heavy-Ion Collider

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 101 (2008) 252301, 2008.
Inspire Record 790350 DOI 10.17182/hepdata.102949

We measure directed flow ($v_1$) for charged particles in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} =$ 200 GeV and 62.4 GeV, as a function of pseudorapidity ($\eta$), transverse momentum ($p_t$) and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all existing models, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to different collision systems, and investigate possible explanations for the observed sign change in $v_1(p_t)$.

11 data tables

Charged particle $v_1(\eta)$ for 0-5 % centrality in Au+Au collisions at 200 GeV.

$<P_x>/<P_t>$ of charged particles as a function of pseudorapidity, for centrality 0-5% in Au+Au collisions at 200 GeV.

Charged particle $v_1(\eta)$ for 5-40 % centrality in Au+Au collisions at 200 GeV.

More…

Beauty photoproduction using decays into electrons at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 78 (2008) 072001, 2008.
Inspire Record 786814 DOI 10.17182/hepdata.45317

Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120pb^-1. The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models.

7 data tables

Total cross sections for electrons from beauty and charm quarks.

Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.

Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.

More…

Indications of Conical Emission of Charged Hadrons at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 102 (2009) 052302, 2009.
Inspire Record 785050 DOI 10.17182/hepdata.102085

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at 200 GeV by the STAR experiment. The acoplanarities in pp and d+Au indicate initial state kT broadening. Larger acoplanarity is observed in Au+Au collisions. The central Au+Au data show an additional effect signaling conical emission of correlated charged hadrons.

14 data tables

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size.

More…

Energy dependence of the charged multiplicity in deep inelastic scattering at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
JHEP 06 (2008) 061, 2008.
Inspire Record 782120 DOI 10.17182/hepdata.45319

The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic $ep$ scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb$^{-1}$. The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in $\epem$ collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions.

23 data tables

Multiplicity distributions measured in the current region of the Breit frame for the bin of 2*E(Breit,current region) = 1.5 to 4.

Multiplicity distributions measured in the current region of the Breit frame for the bin of 2*E(Breit,current region) = 4 to 8.

Multiplicity distributions measured in the current region of the Breit frame for the bin of 2*E(Breit,current region) = 8 to 12.

More…

Deep inelastic inclusive and diffractive scattering at $Q^2$ values from 25 to 320 GeV$^2$ with the ZEUS forward plug calorimeter

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 800 (2008) 1-76, 2008.
Inspire Record 779854 DOI 10.17182/hepdata.11639

Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.

226 data tables

Proton structure function F2 at Q**2 = 25 GeV**2.

Proton structure function F2 at Q**2 = 35 GeV**2.

Proton structure function F2 at Q**2 = 45 GeV**2.

More…

Version 2
Multi-jet cross sections in charged current e+-p scattering at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 78 (2008) 032004, 2008.
Inspire Record 780108 DOI 10.17182/hepdata.50599

Jet cross sections were measured in charged current deep inelastic e+-p scattering at high boson virtualities Q^2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb^-1. Differential cross sections are presented for inclusive-jet production as functions of Q^2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e+-p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits.

23 data tables

Differential polarized inclusive jet cross sections as a function of jet pseudorapidity.

Differential polarized inclusive jet cross sections as a function of jet pseudorapidity.

Differential polarized inclusive jet cross sections as a function of jet transverse energy.

More…

Centrality dependence of charged hadron and strange hadron elliptic flow from sqrt(s_NN) = 200 GeV Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 054901, 2008.
Inspire Record 777954 DOI 10.17182/hepdata.96906

We present STAR results on the elliptic flow v_2 of charged hadrons, strange and multi-strange particles from sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC. The detailed study of the centrality dependence of v_2 over a broad transverse momentum range is presented. Comparison of different analysis methods are made in order to estimate systematic uncertainties. In order to discuss the non-flow effect, we have performed the first analysis of v_2 with the Lee-Yang Zero method for K_s^0 and Lambda. In the relatively low p_T region, p_T <= 2 GeV/c, a scaling with m_T - m is observed for identified hadrons in each centrality bin studied. However, we do not observe v_2(p_T) scaled by the participant eccentricity to be independent of centrality. At higher p_T, 2 GeV/c <= p_T <= 6 GeV/c, v_2 scales with quark number for all hadrons studied. For the multi-strange hadron Omega, which does not suffer appreciable hadronic interactions, the values of v_2 are consistent with both m_T -m scaling at low p_T and number-of-quark scaling at intermediate p_T. As a function of collision centrality, an increase of p_T-integrated v_2 scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions.

28 data tables

$v_{2}(\eta)$ for charged hadrons, $0.15 < p_{T} < 2.0$ GeV/c, centrality $10-40\%$, from $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.

$v_{2}$ as a function of $p_{T}$ for charged hadrons with $|\eta| < 1.0$ in 10–40$%$ $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV, from the Event Plane method (open circles).

$v_{2}$ as a function of $p_{T}$ for charged hadrons with $|\eta| < 1.0$ in 10–40$%$ $Au+Au$ collisions, at $\sqrt{s_{NN}} = 200$ GeV, from the 4-particle cumulant method (solid squares).

More…

Spin alignment measurements of the $K^{*0}(892)$ and $\phi(1020)$ vector mesons in heavy ion collisions at $\sqrt{s}_{NN} = 200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 061902, 2008.
Inspire Record 777248 DOI 10.17182/hepdata.101350

We present the first spin alignment measurements for the $K^{*0}(892)$ and $\phi(1020)$ vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at $\sqrt{s_{NN}}$ = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are $\rho_{00}$ = 0.32 $\pm$ 0.04 (stat) $\pm$ 0.09 (syst) for the $K^{*0}$ ($0.8<p_T<5.0$ GeV/c) and $\rho_{00}$ = 0.34 $\pm$ 0.02 (stat) $\pm$ 0.03 (syst) for the $\phi$ ($0.4<p_T<5.0$ GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for $K^{*0}$ and $\phi$ in Au+Au collisions were also measured with respect to the particle's production plane. The $\phi$ result, $\rho_{00}$ = 0.41 $\pm$ 0.02 (stat) $\pm$ 0.04 (syst), is consistent with that in p+p collisions, $\rho_{00}$ = 0.39 $\pm$ 0.03 (stat) $\pm$ 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.

3 data tables

The spin-density matrix elements $\rho_{00}$ with respect to the reaction plane in midcentral $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV versus $p_{T}$ of the vector meson. The sizes of the statistical uncertainties are indicated by error bars, and the systematic uncertainties by caps. The $K^{∗0}$ data points have been shifted slightly in $p_{T}$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$. The bands and continuous horizontal lines show predictions discussed in the text.

The dependence of $\rho_{00}$ with respect to the reaction plane on the number of participants at midrapidity in $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. The sizes of the statistical uncertainties are indicated by error bars and the systematic uncertainties by caps. The $\phi$ data for $p_{T} > 2$ GeV/$c$ and the $K^{∗0}$ data points have been shifted slightly in $\langle N_{\scriptsize{\mbox{part}}}\rangle$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$.

The spin-density matrix elements $\rho_{00}$ with respect to the production plane in midcentral $Au+Au$ and $p+p$ collisions at $\sqrt{s_{NN}}=200$ GeV versus $p_{T}$ of the vector meson. The sizes of the statistical uncertainties are indicated by error bars and the systematic uncertainties by caps. The $K^{*0}$ and the $\phi$ $p+p$ data points have been shifted slightly in $p_{T}$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$.