We studied K+p interactions at 100 GeV with the Fermi National Accelerator Laboratory 30-in. hydrogen bubble chamber and associated spark-chamber system. We find σtot(K+p)=18.7±1.8 mb and σel(K+p)=2.0±0.4 mb. We present the charged-multiplicity distribution and its moments, and the charge-transfer distribution. The average inelastic charged multiplicity is 〈nc〉=6.65±0.31 and the two-charged-particle correlation functions are f2cc=4.52±1.32 and f2−−=0.47±0.35.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have extracted the strong interaction form factors from K o e3 and K o μ3 data of our previously reported K o L experiment in a manner which does not assume an explicit q 2 = ( p K − p π ) 2 dependence. We present the unparameterized form factors ƒ + (q 2 ) from the K o L → πeν and K o L → πμν modes and ƒ o (q 2 ) and ξ ( q 2 ) from the K o L → πμν data. A comparison of these unparameterized results is made with the results of the Dalitz plot analyses.
The conventional form factor f+ is studied.
We present the results on total channel cross-sections obtained in the Saclay 180 l HBC exposed to a separated K− beam at Nimrod. The cross-sections for each channel are given at 13 incident K− momenta between 1.26 and 1.84 GeV/c.
No description provided.
We have studied the proper time distribution of coherent π + π − decays from a 3 – 10 GeV/ c K L o beam incident on a one meter liquid hydrogen target using a wire spark chamber spectrometer in the 3 0 neutral beam at SLAC. We find ∣(ƒ(0) − ƒ (0))/k∣ = 0.43 ± 0.11 mb , φ(ƒ(0) − ƒ (0)) = -101 0 ± 42 0 .
No description provided.
We report on coherent interactions in a 2.5 event/μb K − d exposure. The predominant channel studied is K − d → K − π + gp − d (415 events). We find strong Q- and L-production in the (K ππ ) system. The production mechanism determines I = 1 2 for both enhancements and a spin-parity in the series 0 − , 1 + ,2 − … . A spin-parity analysis shows the Q to be a 1 + object, while the L is 1 + or 2 − , although a higher spin cannot be excluded. The cross sections for Q and L production and other final states are presented.
CORRECTED FOR UNSEEN RECOIL DEUTERONS BY EXTRAPOLATION. (UNCORRECTED CROSS SECTIONS ARE THOSE OBSERVED WITH P(DEUT) > 140 MEV/C).