We present measurements of the b-bbar production cross section and angular correlations using the D0 detector at the Fermilab Tevatron p-pbar Collider operating at sqrt(s) = 1.8 TeV. The b quark production cross section for |y(b)|<1.0 and p_T(b)>6 GeV/c is extracted from single muon and dimuon data samples. The results agree in shape with the next-to-leading order QCD calculation of heavy flavor production but are greater than the central values of these predictions. The angular correlations between b and bbar quarks, measured from the azimuthal opening angle between their decay muons, also agree in shape with the next-to-leading order QCD prediction.
No description provided.
The errors are combinations of statistical and systematic uncertainties.
The distribution of MU+ MU- azimuthal angle difference.
Cross-sections for hadronic, b-bbar and lepton pair final states in e+e- collisions at sqrt(s) = 183 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. Forward-backward asymmetries for the leptonic final states have also been measured. Cross-sections and asymmetries are also presented for data recorded in 1997 at sqrt(s) = 130 and 136 GeV. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a leptoquark, or of a squark or sneutrino in supersymmetric theories with R-parity violation.
No description provided.
The contribution of interference between initial- and final-state radiationhas been removed.
The contribution of interference between initial- and final-state radiationhas been removed.
Production of events with hadronic and leptonic final states has been measured in e^+e^- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z \gamma events, and compared to Standard Model expectations. The ratio R_b of the cross-section for bb(bar) production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of \gamma-Z interference. The energy dependence of \alpha_em has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on chargino pair production with subsequent decay of the chargino into a light gluino and a quark pair.
SIG(C=MEAS) and SIG(C=CORR) stand for measured values without (C=MEAS) and with (C=CORR) correction for interference between initial- and final-state radiation.
The angular distribution of the thrust axis. Errors include statistical and systematic effects combined, with the former dominant.
The measured values include the effect of interference between initial- andfinal-state radiation.
We have studied azimuthal correlations in singly-tagged e+e− → e+e−μ+μ− events at an average Q2 of 5.2 GeV2. The data were taken with the OPAL detector at LEP at e+e− centre-of-mass energies close to the Z0 mass, with an integrated luminosity of approximately 100 pb−1. The azimuthal correlations are used to extract the ratio $F_{B}^{αmma}/F_{2}^{αmma}$ of the QED structure functions $F_{B}^{αmma}(x,Q^{2})$ and $F_{2}^{αmma}(x,Q^{2})$ of the photon. In leading order and neglecting the muon mass $F_{B}^{αmma}$ is expected to be identical to the longitudinal structure function $F_{L}^{αmma}$. The measurement of $F_{B}^{αmma}/F_{2}^{αmma}$ is found to be significantly different from zero and to be consistent with the QED prediction.
No description provided.
We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.
No description provided.
No description provided.
Integrated b-quark production cross section.
We measure the Drell-Yan differential cross section d2σdMdy||y|<1 over the mass range 11<M<150 GeV/c2 using dielectron and dimuon data from p¯p collisions at a center-of-mass energy of s=1.8 TeV. Our results show the 1M3 dependence that is expected from the naive Drell-Yan model. In comparison to the predictions of recent QCD calculations we find our data favor those parton distribution functions with the largest quark contributions in the x interval 0.006 to 0.03.
Dielectron differential cross section.
Dimuon differential cross section.
Drell-Yan differential cross section for combined dielectron and dimuon data. Error includes both statistics and systematics.
We report the full reconstruction of χc mesons through the decay chain χc→J/ψ γ, J/ψ→μ+μ−, using data obtained at the Collider Detector at Fermilab in 2.6±0.2 pb−1 of p¯p collisions at √s =1.8 TeV. This exclusive χc sample is used to measure the χc-meson production cross section times branching fractions. We obtain σ×B=3.2±0.4(stat)−1.1+1.2(syst) nb for χc mesons decaying to J/ψ with pT>6.0 GeV/c and pseudorapidity ‖η‖<0.5. From this and the inclusive J/ψ cross section we calculate the inclusive b-quark cross section to be 12.0±4.5 μb for pTb>8.5 GeV/c and ‖yb‖<1.
No description provided.
This determination of the b-quark cross section uses an earlier CDF measurement of the pbar p --> J/PSI X cross section of 6.88 +- 1.11 nb. See Abe et al. PRL 69, 3704.
Inclusive J/ψ and ψ(2S) production has been studied in p¯p collisions at √s =1.8 TeV using 2.6±0.2 pb−1 of data taken with the Collider Detector at Fermilab. The products of production cross section times branching fraction were measured as functions of PT for J/ψ→μ+μ− and ψ(2S)→μ+μ−. In the kinematic range PT>6 GeV/c and ‖η‖≤0.5 we get σ(p¯p→J/ψ X)B(J/ψ→μ+μ−) =6.88±0.23(stat)−1.08+0.93(syst) nb, and σ(p¯p→ψ(2S)X)B(ψ(2S)→μ+μ−) =0.232±0.051(stat)−0.032+0.029(syst)nb. From these values we calculate the inclusive b-quark production cross section.
Cross section times the branching ratio into mu+ mu- pairs.
Cross section times the branching ratio into mu+ mu- pairs.
.