Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, $\nu_{\mu}$ $^{12}C \to \mu^{-12}C \pi^+$, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at $ 0.67 \times 10^{-2}$ at mean neutrino energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.
Upper limits for coherent pion production.
We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 25 GeV.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 45 GeV.
Differential cross section in bins of ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 25 GeV.
Using the detector ARGUS at thee+e− storage ring DORIS II, we have investigated inclusive momentum spectra of charged pions, kaons, and protons from decays of the υ(4S) meson. The kaon spectra have been measured in two independent ways, by coherently exploiting the detector's particle identification capabilities, and by detecting decays in-flight. The extracted mean multiplicities for charged hadrons are 7.17±0.05±0.14 pions, 1.56±0.03±0.05 kaons and 0.110±0.010±0.007 protons per υ(4S) decay, where pions and protons fromKso and Δ decays have been subtracted.
Inclusive pion spectrum from UPSI(4S) decays.
Inclusive pion spectrum from UPSI(4S) decays with KS and LAMBDA decay particles included.
Inclusive kaon spectrum from UPSI(4S) decays.
The inclusive production cross sections of η′ (958) andfo (975) mesons are measured ine+e− annihilation in the nonresonant continuum around\(\sqrt s= 10\) GeV and in decays of the υ resonances using the ARGUS detector. For η′ (958) mesons, a production ratio of η′ (958)/ηdir=0.35±0.24, with ηdir=η−BR(η′→ηX)·η′, is determined in direct υ(1S) decays, which can be partially explained by the pseudoscalar singlet/octet mixing. Forfo(975) production, we obtain a production ratio offo(975)/p(770)°=0.17±0.030 in direct υ(1S) decays. In its production features, thefo(975) behaves like an ordinary meson, though aK\(\bar K\) molecule nature cannot be excluded. The substantial production yield of thefo(975) meson demonstrates the important effect of feeddown from mesons beyond the basic multiples on pseudoscalar and vector meson production.
Direct etaprime rates per event for the continuum region (9.36 to 10.45 GeV), the UPSI(1S) (9.46 GeV), UPSI(2S)(10.02 GeV) and UPSI(4S)(10.58 GeV) regions. Data is extrapolated to the full z region.
Radiation corrected normalized cross section for F0(975) production in the continuum events.
Normalized cross section for F0(975) production in direct UPSI(1S) decays.
The production ofDS+ mesons inB meson decays, and inq\(\bar q\) continuum events, has been studied with the ARGUS detector at thee+e− storage ring DORIS II. In addition to the measurement of inclusiveDS+ production in γ(4S)→B\(\bar B\) decays, all eight two-body decay modesB→DS(*)D(*) have been measured with branching ratios between 1% and 3%. By comparing our inclusive and exclusive results to predictions of heavy quark effective theory, a value of (267±28) MeV × [2.7%/BR(Ds+→φπ+)]1/2 is obtained for the weak decay constant fDS(*), averaged overDS+ andDS*+ mesons.
Inclusive D/S cross sections in continuum near to UPSI(4S).
We have measured theR value in non-resonante+e− annihilation using the ARGUS detector at the storage ring DORIS II. At a centre-of-mass energy\(\sqrt s= 9.36\) GeV the ratio of the hadronic cross-section to the μ-pair cross section in lowest order QED has been determined to beR=3.46±0.03±0.13. In addition, we have measured the charged-particle multiplicities in non-resonant hadron production at\(\sqrt s= 10.47\) GeV just below theB\(\bar B\) threshold and in ϒ (4S) resonance decays. For the average charged-particle multiplicities in continuum events and ϒ(4S)→B\(\bar B\) decays we obtain <n>cont=8.35±0.02±0.20 and <n>ϒ(4s)=10.81±0.05±0.23.
Corrected for radiative effects and acceptance.
Unfolded charged particle multiplicity distribution for continuum events.
Unfolded charged particle multiplicity distribution for UPSILON(4S) events.
Using the ARGUS detector at thee+e− storage ring DORIS II at DESY, we have measured the inclusive production ofD0,D+ andD*(2010)+ mesons inB decays and in nonresonante+e− annihilation around 10.6 GeV. The inclusive branching ratios forB decays toD0,D+ andD*+ mesons are found to be (52.2±8.2±3.5)%, (27.2±6.3±3.5)% and (34.8±6.0±3.5)% respectively. Thus,D0 andD+ production account for about 70% of the charm produced inB decays, neglectingb→u contributions to the total width. The production cross sections and momentum spectra for continuume+e− annihilation are also presented.
Non-resonant inclusive cross sections.
Non-resonant inclusive cross sections.
Non-resonant inclusive cross sections.
Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have observed parity violation in the decay Λ ± c → Λπ ± . We measure the coefficient of parity violation, α Λ c , to be −0.96±0.42. In addition, we measure σ BR ( Λ + c → Λπ + and σ BR ( Λ + c → Σ 0 π + ) to be, respectively, (2.2±0.3±0.4) pb and (2.0±0.7±0.4) pb.
No description provided.
Direct observations of the semileptonic decay of Λ c + in the decay channels Λ c + → Λ e + X and Λ c + → Λμ + X have been made using the ARGUS detector at the DORIS II e + e − storage ring. The cross section times branching ratio were found to be σ (e + e − → Λ c + X)·BR( Λ c + → Λ e + X)=4.20±1.28±0.71 pb and σ (e + e − → Λ c + X)·BR( Λ c + → Λμ + X)=3.91±2.02±0.90 pb.
No description provided.