Using data recorded by the CLEO II detector at the Cornell Electron Storage Ring, we report the first observation of an excited charmed baryon decaying into Ξc0π+. The state has mass difference M(Ξc0π+)−M(Ξc0) of 174.3±0.5±1.0MeV/c2, and a width of <3.1MeV/c2 (90% confidence level limit). We identify the new state as the Ξc*+, the isospin partner of the recently discovered Ξc*0.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(X) = FD(X) = const * (1/X)*1/(1- (1/X)-CONST(NAME=EPS)/(1-X))**2. Charged conjugate states are undestood.
Using data recorded by the CLEO-II detector at CESR, we report evidence of a pair of excited charmed baryons, one decaying into Λc+π+ and the other into Λc+π−. The doubly charged state has a measured mass difference M(Λc+π+)−M(Λc+) of 234.5±1.1±0.8 MeV/c2 and a width of 17.9−3.2+3.8±4.0MeV/c2, and the neutral state has a measured mass difference M(Λc+π−)−M(Λc+) of 232.6±1.0±0.8 MeV/c2 and a width of 13.0−3.0+3.7±4.0MeV/c2. We interpret these data as evidence of the Σc*++ and Σc*0, the spin 32+ excitations of the Σc baryons.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1- (1/Z)-CONST(NAME=EPS)/(1-Z))**2.
Using the CLEO detector at the Cornell $e~+e~-$ storage ring, CESR, we study the two-photon production of $\Lambda \overline{\Lambda}$, making the first observation of $\gamma \gamma \to \Lambda \overline{\Lambda}$. We present the cross-section for $ \gamma \gamma \to \Lambda \overline{\Lambda}$ as a function of the $\gamma \gamma$ center of mass energy and compare it to that predicted by the quark-diquark model.
No description provided.
No description provided.
No description provided.
Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.
No description provided.
Using data taken with the CLEO II detector at the Cornell Electron Storage Ring, we have determined the ratio of branching fractions: $R_{\gamma} \equiv \Gamma(\Upsilon(1S) \rightarrow \gamma gg)/\Gamma(\Upsilon(1S) \rightarrow ggg) = (2.75 \pm 0.04(stat.) \pm 0.15(syst.))%$. From this ratio, we have determined the QCD scale parameter $\Lambda_{\overline{MS}}$ (defined in the modified minimal subtraction scheme) to be $\Lambda_{\overline{MS}}= 233 \pm 11 \pm 59$ MeV, from which we determine a value for the strong coupling constant $\alpha_{s}(M_{\Upsilon(1S)}) = 0.163 \pm 0.002 \pm 0.014$, or $\alpha_{s}(M_{Z}) = 0.110 \pm 0.001 \pm 0.007$.
The ALPHAS at MZ is extrapolation from M(UPSI).
A study of charm fragmentation into $D_s^{*+}$ and $D_s^+$ in $e^+e^-$ annihilations at $\sqrt{s}$=10.5 GeV is presented. This study using $4.72 \pm 0.05$ fb$^{-1}$ of CLEO II data reports measurements of the cross-sections $\sigma(D_s^{*+})$ and $\sigma(D_s^+)$ in momentum regions above $x=0.44$, where $x$ is the $D_s$ momentum divided by the maximum kinematically allowed $D_s$ momentum. The $D_s$ vector to vector plus pseudoscalar production ratio is measured to be $P_V(x(D_s^+)>0.44)=0.44\pm0.04$
D/S*+ cross sections in regions of X(D/S*+). BR1 = BR(D/S*+ --> D/S+ GAMMA) * BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
D/S+ cross sections in regions of X(D/S+). BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
D/S*+ cross sections in regions of X/D/S+. In effect this is the secondary D/S+ cross section. BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
Using 4.8 fb$~{-1}$ of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay $D~+\to\pi~0\ell~+\nu$ measured relative to the Cabibbo favored decay $D~+\to\bar{K~0}\ell~+\nu$ is found to be $0.046\pm 0.014\pm 0.017$. Using $V_{cs}$ and $V_{cd}$ from unitarity constraints, we determine $| f_+~{\pi}(0)/f_+~K(0)|~2=0.9\pm 0.3\pm 0.3$ We also present a 90% confidence level upper limit for the branching ratio of the decay $D~+ \to \eta e~+\nu_e$ relative to that for $D~+ \to \pi~0 e~+\nu_e$ of 1.5.
Formfactors for the D+ (D-) decay into pseudoscalar P. Charge conjugate states are implied. LEPTON+ means E+ or MU+. VCD and VCS are the elements of the CKM matrix (See R.M.Barnett et al (PDG), PR D54, 1 (1996)).
A measurement of the spin alignment of charged D^* mesons produced in continuum e^+ e^- \to c \bar{c} events at \sqrt{s}=10.5 GeV is presented. This study using 4.72 fb^{-1} of CLEO II data shows that there is little evidence of any D^* spin alignment.
Systematic errors are not given.
Systematic errors are not given.
Two decay modes of D0 --> K- PI+ and D0 --> K- PI+ PI0 are combined.
We report the first observation of two narrow charmed strange baryons decaying to $\Xi_c^+\gamma$ and $\Xi_c^0\gamma$, respectively, using data from the CLEO II detector at CESR. We interpret the observed signals as the $\Xi_c^{+\prime}(c{su})$ and $\Xi_c^{0\prime}(c{sd})$, the symmetric partners of the well-established antisymmetric $\Xi_c^+(c[su])$ and $\Xi_c^0(c[sd])$. The mass differences $M(\Xi_c^{+\prime})-M(\Xi_c^+)$ and $M(\Xi_c^{0\prime})-M(\Xi_c^0)$ are measured to be $107.8\pm 1.7\pm 2.5$ and $107.0\pm 1.4\pm 2.5 MeV/c^2$, respectively.
The data for two resonances are combined together.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. The data for two resonances are combined together.
Using the CLEO~II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons $\pi^0$, $\eta$, and $\eta^{\prime}$. From our measurements we have obtained the form factors associated with the electromagnetic transitions $\gamma^*\gamma$ $\to$ meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV$^2$ for $\pi^0$, $\eta$, and $\eta^{\prime}$, respectively, and have made comparisons to various theoretical predictions.
The results of PI0 --> GAMMA GAMMA analysis assuming Br(PI0-->2GAMMA)=0.99.
The results of ETA --> GAMMA GAMMA analysis assuming Br(ETA-->2GAMMA)=0.39.
The results of ETA --> 3PI0 analysis assuming Br(ETA-->3PI0)*Br(PI0-->2GAM MA)**3 = 0.31.