The production of the peripheral 3 π mass enhancement in the A 1 region is described. The differential cross section and its variation with 3 π mass is studied and the spin density matrix elements are given for the t -channel and s -channel helicity frames. As observed in π − p interactions t channel but not s channel helicity is conserved. A Deck type double Regge trajectory exchange amplitude gives good fits to the experimental distributions. Its use is supported by the equality of ϱ 0 0 for the A 1 and ϱ 00 for the ϱ in the t -channel, as noted by Donohue.
THE SPIN DENSITY MATRIX ELEMENTS FOR THE RHO (P=4) FROM A1 DECAY ARE IN THE RHO T-CHANNEL FRAME.
The production of η and X° mesons has been investigated in four and six prong events from π + p interactions at 5.45 GeV/ c . The cross sections for the quasi two body states Δ ++ η and Δ ++ X° were found to be 0.076±0.013 mb and 0.017±0.006 mb respectively. A comparison of the matrix elements for these reactions yields an η−X° mixing angle different from that predicted by the quadratic mass formula by about 20°, but within 6° of the linear mass formula result.
No description provided.
We report on A + 2 production in a π + p experiment at 5.45 GeV/ c . The fitted values for the mass and width are given, and the production characteristics are illustrated by the momentum transfer distributions and average density matrix elements. A depletion of events is observed near 1.3 GeV which favours a double pole amplitude or two interfering resonances over a simple Breit-Wigner formula.
No description provided.
PLOT V. T IN FIG. 2(A) NOT COMPILED.
D.M.E'S DETERMINED BY ASSUMING RHO22=0,RHO00=1-2RHO11.
We present data from a spark-chamber study of K+p elastic scattering between 432 and 939 MeV/c, over the range −0.6
No description provided.
No description provided.
No description provided.
Results are reported on the Δ ++ ϱ 0 and the Δ ++ ω 0 final states obtained from a 4 event/μb exposure of the Argonne National Laboratory 30 inch hydrogen bubble chamber to a π + beam at 5.45 GeV/ c . Data are presented on cross sections, differential cross sections, spin density matrix elements and differential cross-sections weighted by density matrix elements. Certain features of the data relevant to various Regge models are noted and the data is compared to a π -B exchange degenerate Regge model due to Abrams and Maor.
No description provided.
FROM RESONANCES PLUS BACKGROUND FITS, CORRECTED FOR RESONANCE TAILS AND UNSEEN OMEGA DECAYS.
No description provided.
The reactions π + p → Δ ++ π + π − and π + p → Δ ++ π + π − π o are used to study ϱ—ω interference at 5.45 GeV/ c . The fitted ϱ mass from a ϱ-ω interference fit is 788 MeV suggesting the possibility of a sum of different interference patterns. Hence the events are weighted by spin density matrix elements which tend to isolate particular exchanges. Results of a fit to these weighted events do not generally agree with the predictions of strong π—B and ϱ—A 2 exchange degeneracy.
No description provided.
We present an analysis of ππN final states obtained from π−p interactions at 2.26 GeV/c. Strong ρ production is present in both final states. In addition, significant nucleon isobar production is observed. We observed the following cross sections: σ(π−π0p)=3.77±0.13 mb, σ(π−π+n)=5.67±0.17 mb, σ(ρ−p)=2.19±0.09 mb, σ(Δ+(1236)π−)=0.30±0.10 mb, σ(N0(1650)π0)=0.49±0.07 mb, σ(ρ0n)=2.89±0.11 mb, σ(Δ−(1236)π+)=0.11±0.06 mb, σ(N+(1470)π−)=0.24±0.06 mb, and σ(N+(1650)π−)=0.45±0.05 mb. The spin-density matrix elements are determined for the ρ0 by interpreting the ρ0 asymmetry as an interference between the resonant P wave and a T=0 S wave. A search for the ε0 in the π+π−n final state failed to yield a direct observation of this effect.
No description provided.
Total cross sections of K+ and K− mesons on protons and deuterons have been measured in a transmission experiment over the range of laboratory momentum 0.6-2.65 GeV/c. Measurements have been made on K− at 58 momenta at intervals of 25-50 MeV/c; the experimental accuracy is better than 1% above 700 MeV/c, and the momentum resolution of the beam is ±0.6%. Structure is observed in the total cross sections suggesting or confirming Y1∗ resonances at masses of 1665, 1768, 1905, 2020, 2250, and 2455 MeV/c2 and Y0∗ resonances at masses of 1695, 1819, 1870, 2100, and 2340 MeV/c2. The K+ measurements are less extensive, and are concentrated in the momentum range below 1.5 GeV/c; the experimental errors are typically ±0.2 mb. Structure previously reported in the K+p and K+d total cross sections near a laboratory momentum of 1.2 GeV/c is confirmed. Total cross sections of K+ and K− on carbon have been measured at a number of momenta with an accuracy of about ±2%.
No description provided.
No description provided.