Kinematically complete measurements of the $pp\to pp\pi^{0}$ reaction were performed for beam energies in the range $292 - 298 $MeV. By detecting both protons in coincidence with the large acceptance COSY-TOF spectrometer set up at an external beam line of the proton synchrotron COSY-Julich, total and differential cross sections and energy distributions were obtained. A strong enhancement is observed in the Dalitz plots resulting from the final state interaction between the outgoing proton pair: the data are well reproduced by Monte Carlo simulations with standard parameters for scattering length $a_0$=-7.83 fm and effective range $r_0$=2.8 fm. The total cross sections exceed the ones measured recently in internal target experiments at IUCF and CELSIUS by roughly 50%. Arguments are presented which link this discrepancy with the effect of the final state interaction pushing yield into the very small-angle region and the near-impossibility of an internal target experiment to cover just this range.
Total P P --> P P PI0 cross section.
The reaction pp -> pp eta was measured at excess energies of 15 and 41 MeV at an external target of the Juelich Cooler Synchrotron COSY with the Time of Flight Spectrometer. About 25000 events were measured for the excess energy of 15 MeV and about 8000 for 41 MeV. Both protons of the process pp eta were detected with an acceptance of nearly 100% and the eta was reconstructed by the missing mass technique. For both excess energies the angular distributions are found to be nearly isotropic. In the invariant mass distributions strong deviations from the pure phase space distributions are seen.
Angular distribution of the ETA in the CM frame.
Angular distribution of the P P momentum in the CM frame.
Squared P P invariant mass distribution.
The cross section for the production of $\omega$ mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the $\omega$ at $\epsilon$=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.
Measured cross sections for omega production.
Angular distribution of the OMEGA in the overall centre-of-momentum frame. Statistical error only.