Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
Inclusive Ξ− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.017±0.004±0.004 Ξ−+Ξ¯+ per hadronic event. A search for Ξ*0(1530)→Ξ−π+ leads to an upper limit of N(Ξ*0)/N(Ξ−)<0.35 at a 90% confidence level.
Numerical values supplied by S. Klein.
Extrapolation over full x range using LUND Monte Carlo.
We report a measurement of the inclusive charged-particle distribution for gluon jets derived from nearly threefold-symmetric three-jet events taken at center-of-mass energy of 29 GeV in e+e− annihilation. The charged-particle spectrum for these jets is observed to fall off more rapidly than those of quark jets of the same energy.
Errors include both statistics and the uncertainty in correction factors. X is defined at the energy of the individual particle divided by the total energy of the jet to which it is assigned.
We have measured the K0+K¯ 0 inclusive cross section in e+e− annihilation at 29 GeV with the Mark II detector SLAC PEP. We find 1.27±0.03±0.15 K0+K¯ 0 per hadronic event. We have also used time-of-flight particle identification to measure the K± rate over the momentum range 300–900 MeV/c.
Extrapolated to full momentum range by Monte-Carlo.
Statistical errors only.
No description provided.
Using the ARGUS detector at DORIS we have observed the prediction of the charged D ∗ meson in e + e − annihilation at a center of mass energy of 10 GeV. The D ∗ fragmentation function has been measured using the decay channels D ∗+ → D 0 π + and D 0 → K − π + and K − π + π + π − .
RESULTS EXTRAPOLATED TO X>O. SYSTEMATIC ERRORS INCLUDED.
ERRORS ARE STATISTICAL ONLY.
The production of Λ hyperons in e+e− annihilation has been measured as a function of their total momenta, transverse momenta, and the event thrust. The total production rate is 0.213±0.012±0.018 Λ or Λ¯ per hadronic event. The observation of correlations in rapidity and angles for events with two detected Λ decays supports fragmentation models with local baryon-number compensation.
No description provided.
No description provided.
No description provided.
Measurements are presented of the inclusive charged-particle cross sections s dσdx for e+e− annihilation at center-of-mass energies of 5.2, 6.5, and 29.0 GeV. Significant scale breaking is observed in these cross sections.
CROSS SECTION S*D(SIG)/DX FOR CHARGED PARTICLES AT SQRT(S) = 5.2, 6.5 AND 29.0 GEV. NUMERICAL VALUES OF DATA TAKEN FROM THESIS OF J.F. PATRICK LBL-14585.
Measurements of multihadron production in e+e− annihilation at center-of-mass energies between 2.6 and 7.8 GeV are presented. Aside from the narrow resonances ψ(3095) and ψ(3684), the total hadronic cross section is found to be approximately 2.7 times the cross section for the production of muon pairs at c.m. energies below 3.7 GeV and 4.3 times the muon-pair cross section at c.m. energies above 5.5 GeV. Complicated structure is found at intermediate energies. Charged-particle multiplicities and inclusive momentum distributions are presented.
ERRORS ARE STATISTICAL ONLY.
ERRORS INCLUDE SYSTEMATICS.
R WITH SMALLER BINNING AROUND RESONANCE REGION. ERRORS ARE STATISTICAL ONLY.
Inclusive momentum and energy spectra of neutral and charged D-mesons produced in e + e − annihilation at energies near 7 GeV are presented. The slope of the energy spectrum is similar to the charged pion spectrum at the same energy. The inclusive cross section σ(e + e − → D or D + anything) at 7 GeV is 4.8±1.3 nb.
No description provided.
No description provided.
SCALING VARIABLE IS X(P=3,DEF=2*E(P=3)/SQRT(S)) > 0.54.
The production of enutral kaons in e + e − annihilation has been measured for c.m. energies between 3.4 GeV and 7.6 GeV. Near 4 GeV the inclusive K S cross section shows an increase and structure similar to total hadron production. Roughly 40–45% of all hadronic final states contain kaons, except at 4.028 GeV and 4.415 GeV, where a significantly larger kaon fraction is observed.
No description provided.
THIS IS TWICE THE MEASURED KS CROSS SECTION. THE ERRORS ARE STATISTICAL ONLY. THERE IS 15 PCT ABSOLUTE NORMALIZATION ERROR, PLUS POSSIBLY SOME ENERGY DEPENDENT ERROR. THE DATA ARE NOT EQUALLY SPACED IN THE ENERGY INTERVALS.