Date

A Study of the Decay $B \to \psi$ X

The CLEO collaboration Alam, M.S. ; Katayama, N. ; Kim, I.J. ; et al.
Phys.Rev.D 34 (1986) 3279, 1986.
Inspire Record 230961 DOI 10.17182/hepdata.23447

We have measured the inclusive branching ratio for B→ψX to be (1.09±0.16±0.21)%, and the exclusive branching ratios for B−→ψK− and B¯ ¯0 *0 to be (0.09±0.05)% and (0.41±0.18)%, respectively. The mass difference between neutral and charged B mesons is 1.1±2.1 MeV, while the difference between the mass of Υ(4S) and twice the mean B-meson mass is 18.5±3.0 MeV. The ψ momentum distribution implies a substantial two-body decay (in agreement with direct measurements), but also some combination of B→ψX with MX>1.5 GeV, and B→ψ’X.

2 data tables

No error for cross-section given in text.

No description provided.


Observation of $\Xi^-$ Production in $e^+ e^-$ Annihilation at 29-{GeV}

Klein, S. ; Himel, T. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 58 (1987) 644, 1987.
Inspire Record 234976 DOI 10.17182/hepdata.20187

Inclusive Ξ− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.017±0.004±0.004 Ξ−+Ξ¯+ per hadronic event. A search for Ξ*0(1530)→Ξ−π+ leads to an upper limit of N(Ξ*0)/N(Ξ−)<0.35 at a 90% confidence level.

2 data tables

Numerical values supplied by S. Klein.

Extrapolation over full x range using LUND Monte Carlo.


Observation of Octet and Decuplet Hyperons in $e^+ e^-$ Annihilation at 10-{GeV} Center-of-mass Energy

The ARGUS collaboration Albrecht, H. ; Binder, U. ; Bockmann, P. ; et al.
Phys.Lett.B 183 (1987) 419-424, 1987.
Inspire Record 236982 DOI 10.17182/hepdata.30227

Results on hyperon production are reported for data accumulated at 10 GeV centre-of-mass energy with the ARGUS detector. Signals for both the octet states Λ, Σ 0 and Ξ − and the decuplet states Σ ± (1385), Ξ 0 (1530) and Ω − are observed 1 (references to a specific state are to be interpreted as also implying the charge conjugate state), some for the first time in e + e − annihilation. Baryon rates from γ dir (1S) decays are enhanced by a factor of about 3 over the continuum.

2 data tables

No description provided.

No description provided.


Limit on the Decay D0 $\to e^\pm \mu^\mp$

Riles, Keith ; Dorfan, J. ; Abrams, G.S. ; et al.
Phys.Rev.D 35 (1987) 2914, 1987.
Inspire Record 236093 DOI 10.17182/hepdata.23380

We have searched for the lepton-flavor-violating decay D0→e±μ∓ in 204 pb−1 of e+e− annihilation data at Ec.m.=29 GeV from the Mark II detector. No candidates were found; we estimate an upper limit on the cross section times branching ratio of σ(e+e−→D0,D¯0; inclusive)B(D0→e±μ∓)<0.35 pb at the 90% confidence level. Simple assumptions yield the rough limit B(D0→e±μ∓)<2.1×10−3. AE.

1 data table

No description provided.


New Results From Asp on Single Photon Production at $\sqrt{s}$ 29-{GeV}

Hearty, C. ; Rothberg, J.E. ; Young, K.K. ; et al.
Phys.Rev.Lett. 58 (1987) 1711, 1987.
Inspire Record 244697 DOI 10.17182/hepdata.20171

This Letter reports results of a search for radiative production, by e+e− annihilation of particles that interact only weakly in matter. The search has been made in the total data set of 115 pb−1 acquired with the ASP detector at the SLAC storage ring PEP (s=29 GeV). No anomalous signal was observed. The number of generations of light neutrinos has been limited to Nν<7.5 (90% confidence level). Limits are also placed on the masses of particles predicted to exist by models of supersymmetry.

1 data table

No description provided.


Observation of $e^+ e^- \to D(s$)+- $D^*(s$)-+ at $\sqrt{s}=4$.14-{GeV}

The MARK-III collaboration Blaylock, G. ; Bolton, T. ; Brown, J.S. ; et al.
Phys.Rev.Lett. 58 (1987) 2171, 1987.
Inspire Record 244856 DOI 10.17182/hepdata.20170

We present evidence for the exclusive reaction e+e−→Ds±Ds*∓, observed with the Mark III detector at the SLAC storage ring SPEAR. The Ds± is reconstructed in the φπ± decay mode, while the Ds*∓ is detected as a narrow peak in the recoil-mass distribution. The mass of the Ds* is found to be 2109.3±2.1±3.1 MeV/c2, yielding a Ds*−Ds mass difference of 137.9±2.1±4.3 MeV/c2. The width of the Ds* is <22 MeV/c2 at the 90%-confidence level. The observed signal corresponds to σ(e+e−→Ds+Ds*−+Ds−Ds*+)B(Ds+→φπ+)=30±6±11 pb at s=4.14 GeV.

1 data table

No description provided.


Multi - Hadronic Events at E(c.m.) = 29-GeV and Predictions of QCD Models from E(c.m.) = 29-GeV to E(c.m.) = 93-GeV

Petersen, A. ; Abrams, G.S. ; Adolphsen, Chris ; et al.
Phys.Rev.D 37 (1988) 1, 1988.
Inspire Record 246184 DOI 10.17182/hepdata.4114

Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.

74 data tables

Aplanarity distribution.

QX Distribution(QX=SQRT(3)*(Q3-Q2)).

The (Q2-Q1) distribution.

More…

First Observation of $\gamma \gamma \to \omega \rho^0$

The ARGUS collaboration Albrecht, H. ; Andam, A.A. ; Binder, U. ; et al.
Phys.Lett.B 196 (1987) 101, 1987.
Inspire Record 247567 DOI 10.17182/hepdata.30104

The reaction γγ → 2 π + 2 π − π 0 has been studied using the the ARGUS detector at the e + e − storage ring DORIS II at DESY. The production of the vector-meson pair ωϱ 0 is observed for the first time. The cross section for γγ → ωϱ 0 and the topological cross section for γγ → 2 π + 2 π − π 0 are given. The angular distribution in ωϱ 0 events do not indicate any specific dominant spin-parity; they are consistent with isotropic production and decay of the ω and ϱ 0 mesons over the available W γγ range.

2 data tables

Topological cross section.

OMEGA RHO0 Production cross section.


First Observation of $\gamma \gamma \to \omega \omega$

The ARGUS collaboration Albrecht, H. ; Andam, A.A. ; Binder, U. ; et al.
Phys.Lett.B 198 (1987) 577-582, 1987.
Inspire Record 247566 DOI 10.17182/hepdata.30070

The reaction γγ → 2 π + 2 π − 2 π 0 has been studied using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of ω mesons is observed and, in particular, the reaction γγ → ωω is seen for the first time. The cross section for γγ → ωω has an enhancement at ∼ 1.9 GeV/ c 2 of about 10 nb. The cross sections for γγ → 2 π + 2 π − 2 π 0 and γγ → ωπ + π − π 0 are also given.

3 data tables

Topological cross section. 14 pct systematic uncertainty not included.

Cross section for (omega omega) production. Additional 25 pct systematic error not included.

Cross section for (omega pi+ pi- pi0) where (omega omega) events have been removed. Additional 15 pct systematic error not included.


Observation of $\Omega^-$ Production in $e^+ e^-$ Annihilation at 29-{GeV}

Klein, S. ; Himel, T. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 59 (1987) 2412, 1987.
Inspire Record 247900 DOI 10.17182/hepdata.20175

Inclusive Ω− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.014±0.006±0.004 Ω−, Ω¯+ per hadronic event. This is roughly 35 times the Lund-model prediction of 0.0004 Ω−, Ω¯+ per hadronic event, but comparable to the Webber-model prediction of 0.006 Ω−, Ω¯+ per hadronic event. The large rate of Ω− production, compared with production rates for other baryons, and with theoretical predictions based on diquark models, indicates that spin suppression does not hold for Ω− production.

2 data tables

Radiatively corrected inclusive cross section.

Extrapolation to full momentum range.