The ALICE experiment at the LHC has studied inclusive J/$\psi$ production at central and forward rapidities in pp collisions at $\sqrt{s} = 7$ TeV. In this Letter, we report on the first results obtained detecting the J/$\psi$ through its dilepton decay into $e^+e^-$ and $\mu^+\mu^-$ pairs in the rapidity range |y|<0.9 and 2.5<y<4, respectively, and with acceptance down to zero $p_{\rm T}$. In the dielectron channel the analysis was carried out on a data sample corresponding to an integrated luminosity $L_{\rm int}$ = 5.6 nb$^{-1}$ and the number of signal events is $N_{J/\psi}=352 \pm 32$ (stat.) $\pm$ 28 (syst.); the corresponding figures in the dimuon channel are $L_{\rm int}$ = 15.6 nb$^{-1}$ and $N_{J/\psi} = 1924 \pm 77$ (stat.) $\pm$ 144(syst.). The measured production cross sections are $\sigma_{J/\psi}$ (|y|<0.9) = 12.4 $\pm$ 1.1 (stat.) $\pm$ 1.8 (syst.) + 1.8 -2.7 (syst.pol.) $\mu$b and $\sigma_{J/\psi}$ (2.5<y<4) = 6.31 $\pm$ 0.25 (stat.) $\pm$ 0.76 (syst.) +0.95 -1.96 (syst.pol.) $\mu$b. The differential cross sections, in transverse momentum and rapidity, of the J/$\psi$ were also measured.
Double differential J/PSI cross section from the di-electron channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors considering. a +1 polarization in the Collins-Soper frame, a -1 polarization in the Collins-Soper frame, a +1 polarization in the Helicity frame and a -1 polarization in the Helicity frame, respectively.
Differential J/PSI cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors (in MUB/GEV) considering a +1 polarization in the Collins-Soper frame, a -1 polarization in the Collins-Soper frame, a +1 polarization in the Helicity frame and a -1 polarization in the Helicity frame, respectively.
Differential J/PSI cross section from the di-electron and di-muon channel as a function of rapidity, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors (in MUB/GEV) considering. Data in the first point of this table updated from the erratum.
We have measured the polarizations of J/ψ and ψ(2S) mesons as functions of their transverse momentum pT when they are produced promptly in the rapidity range |y|<0.6 with pT≥5 GeV/c. The analysis is performed using a data sample with an integrated luminosity of about 800 pb−1 collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as pT increases from 5 to 30 GeV/c. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of J/ψ and ψ(2S) mesons from B-hadron decays are also reported.
Polarization parameter ALPHA for J/PSI production.
Polarization parameter ALPHA for PSI(2S) production.
The production of $J/\psi$ mesons in continuum $e^+e^-$ annihilations has been studied with the BABAR detector at energies near the $\Upsilon(4S)$ resonance, approximately 10.6 GeV. The mesons are distinguished from $J/\psi$ production in B decays through their center-of-mass momentum and energy. We measure the cross section $e^+e^-\to J/\psi X$ to be $2.52\pm 0.21\pm 0.21$ pb: for momentum above 2 GeV/c, it is $1.87\pm 0.10\pm 0.15$ pb. We set a 90% confidence level upper limit on the branching fraction for direct $\Upsilon(4S)$\to J/\psi X$ decays at $4.7\times 10^{-4}$.
Cross section measurement.
The production of Jψ mesons in Z0 decays is studied using 3.6 million hadronic events recorded by the OPAL detector at LEP. The inclusive Z0 to Jψ and b-quark to Jψ branching ratios are measured from the total yield of Jψ mesons, identified from their decays into lepton pairs. The Jψ momentum distribution is used to study the fragmentation of b-quarks. The production rate of ψ′ mesons, identified from their decays into a Jψ and a π+π− pair, is measured as well. The following results are obtained: ${Br(Z^{0}⌝ghtarrow {⤪ J}/ i X)=(3.9pm 0.2pm 0.3)cdot 10^{-3} {⤪ and} ↦op Br(Z^0⌝ghtarrow i ^⌕ime X)=(1.6pm 0.3pm 0.2)cdot 10^{-3}, }$ where the first error is statistical and the second systematic. Finally the Jψ sample is used to reconstruct exclusive b-hadron decays and calculate the corresponding b-hadron branching ratios and masses.
No description provided.
No description provided.
No description provided.
This paper reports the measurement of the B meson and b quark cross sections through the decay chain B0→J/ψ K*(892)0, J/ψ→μ+μ−, K*(892)0→K+π−, using 4.3 pb−1 of data collected at the Collider Detector at Fermilab in p¯p collisions at qrts=1.8 TeV. We obtain σB=1.5±0.7(stat)±0.6(syst) μb for B0 mesons with transverse momentum PT>9.0 GeV/c and rapidity ‖y‖<1.0. Using this result, we find σb=3.7±1.6(stat)±1.5(syst) μb for b quarks with PT>11.5 GeV/c and rapidity ‖y‖<1.0. The b quark cross section is compared to next-to-leading order QCD calculations and previous measurements.
B0 meson cross section.
Bquark cross section.
Inclusive J/ψ and ψ(2S) production has been studied in p¯p collisions at √s =1.8 TeV using 2.6±0.2 pb−1 of data taken with the Collider Detector at Fermilab. The products of production cross section times branching fraction were measured as functions of PT for J/ψ→μ+μ− and ψ(2S)→μ+μ−. In the kinematic range PT>6 GeV/c and ‖η‖≤0.5 we get σ(p¯p→J/ψ X)B(J/ψ→μ+μ−) =6.88±0.23(stat)−1.08+0.93(syst) nb, and σ(p¯p→ψ(2S)X)B(ψ(2S)→μ+μ−) =0.232±0.051(stat)−0.032+0.029(syst)nb. From these values we calculate the inclusive b-quark production cross section.
Cross section times the branching ratio into mu+ mu- pairs.
Cross section times the branching ratio into mu+ mu- pairs.
.
This letter reports the full reconstruction of B mesons through the decay chain B±→J/ψ K±, J/ψ→μ+μ−, using data obtained at the Collider Detector at Fermilab in p¯p collisions at √s =1.8 TeV. This exclusive sample, the first observed at a hadron collider, is then used to measure the B-meson cross section, from which we extract the b-quark cross section. We obtain σ=2.8±0.9 (stat) ±1.1(syst) μb for B− mesons with PT>9.0 GeV/c and rapidity ‖y‖<1.0. We obtain σ=6.1±1.9(stat) ±2.4(syst) μb, for b quarks with transverse momentum PT>11.5 GeV/c and rapidity ‖y‖<1.0.
B-meson cross section.
B-quark cross section.
The production of the Jψ resonance in 125-GeV/c p¯ and φ− interactions with Be, Cu, and W targets has been measured. The cross section per nucleon for Jψ production is suppressed in W interactions relative to the lighter targets, especially at large values of Feynman x, which is opposite to the expectation from the various explanations of the European Muon Collaboration effect. Models incorporating modifications of the gluon structure functions in heavy targets show qualitative agreement with the data.
No description provided.
No description provided.
No description provided.
Evidence is presented for a narrow state, called ξ, in the decay modes J/ψ→γξ, ξ→K+K−, and ξ→KS0KS0. In the K+K− mode, the ξ has a mass of 2.230±0.006±0.014 GeV/c2, a width of Γ=0.026−0.016+0.020± 0.017 GeV/c2, a product branching ratio of (4.2−1.4+1.7±0.8)×10 −5, and a statistical significance of ∼4.5 standard deviations. In the KS0KS0 mode, it has a mass of 2.232±0.007±0.007 GeV/c2, a width of Γ=0.018−0.015+0.023± 0.010 GeV/c2, a product branching ratio of (3.1−1.3+1.6±0.7)×10 −5, and a statistical significance of ∼3.6 standard deviations. Limits on ξ decay to other final states are presented.
No description provided.
A search has been made for the inclusive production of J ψ (3.1) and ϒ (9.4) mesons in e + e − interactions at 29 GeV, via their decay into two leptons. No signal is observed in the J ψ region, nor in the ϒ region. The limits on the cross sections are σ ( e + e − → ψX ) < 4.4 × 10 −36 cm 2 , and σ ( e + e − → ϒX ) < 4.7 × 10 −36 cm 2 . The same data yield limits on the branching ratios for the b quark BR ( b → ψX ) < 4.9% and BR ( b → ℓ + ℓ − X ) < 0.8%.
No description provided.
No description provided.