Date

The ratio of π° photoproductions from neutrons and protons in deuterium in the energy range of 700 to 1100 mev.

Chang, Tseng-Hsu ; Walker, Robert Lee ;
CIT-12, 1962.
Inspire Record 44258 DOI 10.17182/hepdata.37218

The ratio of the cross sections for photoproduction of neutral pions from neutrons to that from protons has been obtained at average photon energies of 750, 875, and 1050 mev at a pion CM angle of 60° and at average photon energies of 875 and 1050 mev at a pion CM angle of 90°. The experimental technique required simultaneous detection of both the pions and the nucleons. Pions were detected by three scintillation counters. Lead plates of 2.4 radiation lengths and 1.2 radiation lengths were placed in front of the second and third counters. Neutral pions were identified by the absence of output in the first counter and the large outputs in the second and third counters. Nucleons were detected in two scintillation counters. The second of the two counters is 11” thick and has approximately 20% efficiency of detecting neutrons. Neutrons were identified by the absence of output in the first counter. The energy of the incident photons was determined by synchrotron subtraction. Since the statistical accuracy of synchrotron subtraction is poor, a system of three fast coincidence circuits was used as a time-of-flight instrument to reduce the number of events initiated by low energy photons. The statistical errors assigned to the ratio range between 15-30%. The results of this experiment agree with the results of Bingham within statistical errors, but show a general tendency for the σ^(no)/ σ^o ratio to lower. The ratio of σ^(no)/ σ^o obtained in this experiment ranges between 0.4 and 0.8. The cross sections for neutral pion photoproduction from neutrons are derived from the σ^(no)/ σ^o ratio and the Caltech data on neutral pion photoproduction from hydrogen.

2 data tables

No description provided.

No description provided.


Total Cross Sections for Negative Pions on Protons at 230, 290, 370, 427, and 460 Mev

Caris, John C. ; Goodwin, Lester K. ; Kenney, Robert W. ; et al.
Phys.Rev. 122 (1961) 262-264, 1961.
Inspire Record 944986 DOI 10.17182/hepdata.26810

Total cross sections for negative pions on protons were measured at laboratory energies of 230, 290, 370, 427, and 460 Mev. The measurements were made in the same pion beams as and at energies identical with those of our π−−p differential scattering experiments. Comparisons of the total and differential scattering can be made with the dispersion theory at a given energy without introducing the systematic errors that would normally enter due to uncertainties in the parameters of more than one pion beam. The measured total cross sections are found to agree within statistics with other measured values, and with the sums of elastic, inelastic, and charge-exchange cross sections measured at this laboratory. The results are:

1 data table

No description provided.


Charge-Exchange Scattering of Negative Pions by Hydrogen at 230, 260, 290, 317, and 371 Mev

Caris, John C. ; Kenney, Robert W. ; Perez-Mendez, Victor ; et al.
Phys.Rev. 121 (1961) 893-904, 1961.
Inspire Record 944987 DOI 10.17182/hepdata.805

The differential cross section for charge-exchange scattering of negative pions by hydrogen has been observed at 230, 260, 290, 317, and 371 Mev. The reaction was observed by detecting one gamma ray from the π0 decay with a scintillation-counter telescope. A least-squares analysis was performed to fit the observations to the function dσdω=Σl=15alPl−1(cosθ) in the c.m. frame. The best fit to our experimental measurements requires only s- and p-wave scattering. The results (in mb) are: The least-squares analysis indicates that d-wave scattering is not established in this energy range.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of positive pions from hydrogen at small angles at energies 700 to 1025 mev

Boyden, James Harrison ; Walker, Robert Lee ;
CIT (1), 1961.
Inspire Record 44250 DOI 10.17182/hepdata.37215

Measurements of the cross section for photoproduction of [...] mesons from hydrogen have been extended to angles as small as 5[...] in the c. m. system, using a magnetic spectrometer. At a photon energy of 1025 Mev, the cross section decreases as the angle changes from 5[degrees] to 13[degrees], reaching a minimum before increasing again to the maximum near 40[degrees] which has been previously observed (5). Less extensive measurements at energies 700, 800, 900, and 960 Mev all show a similar rapid decrease with angle in the angular range less than 15[degrees] c.m., although below 960 Mev no actual minimum is observed. These effects at small angles arise presumably from the "retardation term", or "meson current" term and its interference with other contributions to the photoproduction amplitude. It is interesting that a minimum near 15[degrees] is characteristic of the pure Born approximation (retardation term plus "S-wave"). Values of the 0[degree] cross section that are much more accurate than previous estimates have been obtained. An attempt has been made to extract a value of the pion-nucleon coupling constant by an extrapolation into the region cos [...]. Using the best set of data, the value obtained was [...].

4 data tables

No description provided.

No description provided.

No description provided.

More…

Angular Distributions of Photopions from Hydrogen

Knapp, Edward A. ; Kenney, Robert W. ; Perez-Mendez, Victor ;
Phys.Rev. 114 (1959) 605-611, 1959.
Inspire Record 944992 DOI 10.17182/hepdata.26850

An accurate measurement of the differential cross section for the photoproduction of positive pions from protons has been made at the Berkeley synchrotron for photon energies of 260 and 290 Mev. The mesons were produced in a thin-walled liquid-hydrogen target, and the meson-detection apparatus utilized the characteristic decay of the pion. The measurements were done in two steps, from 0° to 50° with equipment specifically designed to reduce a very high forward-angle positron background, and from 30° to 160° with equipment whose efficiency and solid angle could be accurately determined. The abrupt flattening of the observed cross section in the region forward of 40° is due to "photoelectric ejection" of pions from the cloud surrounding the nucleon. The results are compared to the theory of photo-production derived from the dispersion relations, and the agreement is satisfactory within the limitations of the theory.

2 data tables

No description provided.

No description provided.


Photoproduction of Charged Pions from Deuterium

Land, Robert H. ;
Phys.Rev. 113 (1959) 1141-1146, 1959.
Inspire Record 944993 DOI 10.17182/hepdata.26852

The photoproduction of charged pions from deuterium has been studied using a "monochromatic" gamma-ray beam of 292±8 Mev. The energy spectra of both positive and negative pions at the laboratory angle of 120° were determined and both agreed within experimental error with that predicted by the theory of Lax and Feshbach. The negative-to-positive ratio at 120° was 1.07±0.16, and within experimental error, was independent of meson energy. At an angle of 73° the ratio was 0.90±0.23 for 98.7 Mev mesons. The measured negative-to-positive ratio disagrees both with the simple classical picture of Brueckner and the phenomenological theory of Watson. Some results on the ratio using a bremsstrahlung beam are given.

1 data table

No description provided.


Photoproduction of Positive Pions from Protons

Uretsky, Jack L. ; Kenney, Robert W. ; Knapp, Edward A. ; et al.
Phys.Rev.Lett. 1 (1958) 12-14, 1958.
Inspire Record 944927 DOI 10.17182/hepdata.21871

None

2 data tables

No description provided.

No description provided.


Negative-to-Positive Ratio of Photomesons from Deuterium

Sands, Matthew ; Teasdale, J.G. ; Walker, Robert L. ;
Phys.Rev. 95 (1954) 592-593, 1954.
Inspire Record 944931 DOI 10.17182/hepdata.589

None

2 data tables

No description provided.

No description provided.


Measurement of polarization observables $\textbf{T}$, ${\textbf{P}}$, and ${\textbf{H}}$ in $\mathbf {\pi ^0}$ and $\mathbf {\eta }$ photoproduction off quasi-free nucleons

The CBELSA/TAPS collaboration Jermann, N. ; Krusche, B. ; Metag, V. ; et al.
Eur.Phys.J.A 59 (2023) 232, 2023.
Inspire Record 2712592 DOI 10.17182/hepdata.145075

The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.

4 data tables

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

More…