pp-elastic differential cross sections are reported at 492 MeV from 40° to 90°, and at 576, 642, 728, and 793 MeV from 75° to 90° c.m., with an absolute accuracy of less than 1%. These data, obtained with polyethylene targets, agree with recent measurements at the same energies obtained with a liquid-hydrogen target. © 1996 The American Physical Society.
No description provided.
No description provided.
No description provided.
We have searched for a neutral $H$ dibaryon decaying via $H\rightarrow\Lambda n$ and $H\rightarrow\Sigma~0 n$. Our search has yielded two candidate events from which we set an upper limit on the $H$ production cross section. Normalizing to the inclusive $\Lambda$ production cross section, we find $(d\sigma_H/d\Omega)\,/\,(d\sigma_\Lambda/d\Omega) < 6.3\times 10~{-6}$ at 90\% C.L., for an $H$ of mass $\approx$\,2.15GeV/$c~2$.
No description provided.
Absolute pp-elastic-differential cross sections were measured at incident energies 492, 576, 642, 728, and 793 MeV from about 30° to 90° c.m. The total uncertainty was determined to be less than 1%, made possible by particle counting for beam normalization and extensive cross-checks of systematic effects. These new data are consistent with previous data above 600 MeV but have uncertainties about a factor of 10 smaller. Near 500 MeV these data are consistent with 90° data from TRIUMF, but differ significantly from similar data from PSI; the cause of this discrepancy is discussed.
No description provided.
No description provided.
No description provided.
The absolute p-d elastic-scattering differential cross sections were measured at 641.3 and 792.7 MeV beam energies over a range of c.m. angles from ∼35° to ∼115° and ∼35° to ∼140°, respectively. The longitudinally polarized (L-type) proton beam produced by the Lamb-shift ion source at LAMPF was used. The beam intensity was measured to high accuracy (∼0.1%) by a scintillator-beam particle-counting system designed and developed prior to the experiment. Typical uncertainties in the absolute cross sections were about 2–3% total, somewhat larger at back angles. The present results were compared with the existing measurements and the controversy about the previous data at 800 MeV was resolved. The present data can be fit with a relativistic multiple-scattering theory which uses off-mass-shell extrapolations of the nucleon-nucleon amplitudes suggested by the structure of derivative meson-nucleon couplings. Relativistic-impulse-approximation calculations do not fit these data at either energy.
TARGET IS A LIQUID DEUTERIUM. THE LABORATORY ANGLES BIN SIZES ARE 30 MRAD AT FORWARD ANGLES AND 50 MRAD AT OTHER ANGLES.
TARGET IS A LIQUID DEUTERIUM. THE DATA IN THIS TABLE ARE THE SAME AS IN THE TABLE 1, BUT IN THE ANOTHER REPRESENTATION.
TARGET IS A LIQUID DEUTERIUM. THE DATA IN THIS TABLE ARE THE SAME AS IN THE TABLE 1, BUT IN THE ANOTHER REPRESENTATION.
The cross section for elastic scattering of 794-MeV neutrons by deuterium has been measured for neutron center of mass angles from 139° to 179°. The angular distribution is fitted very well both by an empirical function αeβ(μ−μ180∘) and by a calculation that uses the one parameter Craigie-Wilkin triangle diagram technique. [NUCLEAR REACTION nH2→H2n, E=794 MeV; measured σ(θ). Calculated σ(θ) with triangle diagram techniques.]
X ERROR H = 12.60 CM. X ERROR D(THETA) = 2.0000 DEG.
The differential cross section for n−p elastic scattering in the angular region 145°<θc.m.<180° has been measured with high statistical accuracy using the monoenergetic neutron beam at Clinton P. Anderson Meson Physics Facility. The results differ significantly from previous Dubna and Princeton-Pennsylvania Accelerator results but agree reasonably well with recent Saclay data except at extreme backward angles.
No description provided.
None
No description provided.