The reaction γ p → K + K − p has been investigated with tagged photons in the energy range of 20 < E γ < 70 GeV. A structure in the 1.7 GeV mass region is observed and interpreted in terms of a recurrence of the ø.
No description provided.
Measurements of the reaction γ p → p π + π − π + π − are presented, in which π + π − π + π − systems with masses up to 3 GeV are produced from fragmentation of the incident photon. The reaction is dominated by production of the large peak of the ϱ′(1600) meson and, at higher masses ≳2 GeV, y production of jet-like 4 π systems. The ϱ′(1600) meson is produced by a predominantly s -channel helicity conserving mechanism. At higher masses there are also indications of ϱπ peaks, of masses 1.3 GeV (the A 2 meson) and 1.75 GeV, produced with a recoiling π meson by a mechanism consistent with the Deck effect.
CORRECTED FOR TAILS OF BREIT-WIGNER RESONANCE USED IN FIT AND ALLOWING FOR 10 PCT BACKGROUND.
Performing a PWA of the π − π − π + system over the −t p/p range 0.2 to 0.4 GeV 2 we find evidence for a J P = 0 − , J G =1 − meson of mass 1342 ± 20 MeV and width 220 ±70 MeV decaying into ϵπ. This state is produced by natural parity exchange with a slope similar to that of elastic scattering. It can be interpreted as a radial excitation of the π meson (π′).
INTEGRATING EXTRAPOLATED EXPONENTIAL FIT GIVES A TOTAL CROSS SECTION OF ABOUT 54 MUB.
Results of measurements of the polarization parameter in K+p elastic scattering at 650, 700, 845, and 940 MeV/c are presented. Details of the measurements are described and results are compared with previous measurements and partial-wave parametrizations of the data. The implication of the existence of Z* resonances in light of these results is discussed.
No description provided.
Evidence is presented for inclusive photoproduction of F ± mesons in three decay modes, ηπ ± , ηπ ± π + π − and ηπ ± π + π + π − π − . The average mass of the F ± is found to be 2.020±0.010 GeV.
No description provided.
A study of the reaction π − p → X − p based on 1.27 × 10 6 events, corresponding to a mean sensitivity of 200 events/μb, is presented. Properties of the exclusive channels π − p → π − π 0 p, π + π − π − p, π + π − π − π 0 p, π + π + π − π − π − p and π + π + π − π − π − π 0 p are discussed.
No description provided.
No description provided.
No description provided.
The reaction γ p→K + K − p has been investigated with photons in the energy range of 20< E γ <36 GeV and with K + K − pairs in the mass range of M K + K − <2.0 GeV. The production of the φ(1019) contributes with a cross section σ ( γ p → φ p) × BR( φ →K + K − ) = 240±6 nb with an additional systematic error of ±20 nb. In the higher mass range of 1.05< M K + K − <2.0 GeV the production of K + K − pairs yields a cross section σ ( γ p→K + K − p) = 160±8 nb with an additional systematic error of +40 −30 nb.
No description provided.
K+ K- PRODUCTION ABOVE PHI MASS.
No description provided.
Experimental results on the reaction π − p → K ∗0 (890) X 0 at 10 GeV /c are presented. By using the K ∗0 polarization measurements, a detailed study of the production has been carried out as a function of the missing mass squared and of the four-momentum trasnfer squared to the K ∗0 . We found that: (a) K ∗0 production is dominated by natural parity exchange; (b) K ∗0 helicity-zero production dominates the unnatural parity exchange contribution and (c) the main features of the reaction are in agreement with the predictions of the finite mass sum rules.
TO TAL (NATURAL+UNATURAL PARITY EXCHANGE) CROSS-SECTIONS.
NATURAL PARITY EXCHANGE CROSS-SECTIONS.
UNATURAL PARITY EXCHANGE CROSS-SECTIONS.
We present results on an amplitude analysis of the K + K − system produced in the reaction π − p→K + K − n from threshold up to 2.2 GeV. The branching ratios of f 0 and f' to K K have been determined. In the low mass region of the K K system the observation of an S-wave enhancement at 1.3 GeV and the interference of the f 0 -A 2 -f' mesons are studied. We observe a 3 − structure in the mass region of 1.7 GeV which is consistent with g 0 production. With this interpretation the branching ratio g→ K K has been determined. Evidence for a new structure in the J p = 2 + wave around 1.8 GeV with a width of ∼200 MeV is presented.
HELICITY ZERO D-WAVE AMPLITUDE FITTED BY SUM OF BREIT-WIGNER RESONANCES. F 14 GIVES T-DEPENDENCE. ALSO EVIDENCE FOR 1.8 GEV STATE WITH 0.60 +- 0.13 MUB PRODUCTION CROSS SECTION.
FROM HELICITY ZERO F-WAVE AMPLITUDE ASSUMING PREDOMINANTLY G(1680)0 PRODUCTION. F 16 GIVES T-DEPENDENCE.
K ∗0 (890) production in the hyperchange exchange reaction π − p → K ∗0 (890) Λ 0 Σ 0 at 10 GeV/ c (28 448 events) is discussed. An amplitude analysis in the t ′ range up to 1 GeV 2 shows that the production mechanism is dominated by natural parity exchange (∼84%). Comparisons are made with predictions from a Regge model and a quark model.
DENSITY MATRIX ELEMENTS IN THE GOTTFRIED-JACKSON SYSTEM ALLOWING FOR COHERENT S-WAVE BACKGROUND TO P-WAVE BREIT-WIGNER K*(892)0 RESONANCE.
No description provided.