Date

Search for single production of vector-like quarks decaying into $W(\ellν)b$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 012, 2025.
Inspire Record 2936806 DOI 10.17182/hepdata.161563

A search for single production of a vector-like quark $Q$, which could be either a singlet $T$, with charge $\tfrac23$, or a $Y$ from a $(T,B,Y)$ triplet, with charge $-\tfrac43$, is performed using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to the full integrated luminosity of 140 fb$^{-1}$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis targets $Q \to Wb$ decays where the $W$ boson decays leptonically. The data are found to be consistent with the expected Standard Model background, so upper limits are set on the cross-section times branching ratio, and on the coupling of the $Q$ to the Standard Model sector for these two benchmark models. Effects of interference with the Standard Model background are taken into account. For the singlet $T$, the 95% confidence level limit on the coupling strength $κ$ ranges between 0.22 and 0.52 for masses from 1150 to 2300 GeV. For the $(T,B,Y)$ triplet, the limits on $κ$ vary from 0.14 to 0.46 for masses from 1150 to 2600 GeV.

19 data tables

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

More…

Measurements of differential cross-sections of $WbWb$ production in the dilepton channel in $pp$ collisions at $\sqrt{s}$ = 13 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-094, 2025.
Inspire Record 2935747 DOI 10.17182/hepdata.159379

At the Large Hadron Collider, the $WbWb$ final state is expected to be dominated by $t\bar{t}$ production with a contribution from single-top processes. Differential cross-sections for $WbWb$ production in the dilepton decay channel are measured at the particle level as a function of various kinematic variables. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider over the period from 2015 to 2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. Measurements are performed within the fiducial phase-space defined by the presence of two $b$-jets and one electron and one muon of opposite charges. The differential cross-sections are corrected for detector effects and unfolded to the particle level. Results are compared with predictions from Monte Carlo event generators at next-to-leading order in perturbative quantum chromodynamics. These measurements provide valuable constraints on the modelling of $WbWb$ production and the interference between doubly resonant and singly resonant $WbWb$ production.

186 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Exclusive:</i> <ul> <li> NLEP = 2, EMU, PT &gt; 28 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS = 2 </ul><br/> <i>Inclusive:</i> <ul> <li> NLEP = 2, EMU, PT &gt; 28 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS &gt;= 2 </ul><br/> <b>Measurements:</b><br/> <i>Exclusive:</i><br/> Spectra: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 1">Table 1</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 4">Table 4</a> ) <li>SIG (<a href="159379?table=Table 7">Table 7</a> ) </ul><br/> Data statistical covariances: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 2">Table 2</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 5">Table 5</a> ) <li>SIG (<a href="159379?table=Table 8">Table 8</a> ) </ul><br/> MC statistical covariances: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 3">Table 3</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 6">Table 6</a> ) <li>SIG (<a href="159379?table=Table 9">Table 9</a> ) </ul><br/> <b>Particle level:</b><br/> <i>Inclusive:</i><br/> Spectra: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 10">Table 10</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 13">Table 13</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 16">Table 16</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 19">Table 19</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 22">Table 22</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 25">Table 25</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 28">Table 28</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 31">Table 31</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 34">Table 34</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 37">Table 37</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 40">Table 40</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 43">Table 43</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 46">Table 46</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 49">Table 49</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 52">Table 52</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 55">Table 55</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 58">Table 58</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 61">Table 61</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 64">Table 64</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 67">Table 67</a> ) <li>SIG (<a href="159379?table=Table 70">Table 70</a> ) </ul><br/> Data statistical covariances: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 11">Table 11</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 14">Table 14</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 17">Table 17</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 20">Table 20</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 23">Table 23</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 26">Table 26</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 29">Table 29</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 32">Table 32</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 35">Table 35</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 38">Table 38</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 41">Table 41</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 44">Table 44</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 47">Table 47</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 50">Table 50</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 53">Table 53</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 56">Table 56</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 59">Table 59</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 62">Table 62</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 65">Table 65</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 68">Table 68</a> ) <li>SIG (<a href="159379?table=Table 71">Table 71</a> ) </ul><br/> MC statistical covariances: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 12">Table 12</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 15">Table 15</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 18">Table 18</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 21">Table 21</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 24">Table 24</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 27">Table 27</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 30">Table 30</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 33">Table 33</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 36">Table 36</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 39">Table 39</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 42">Table 42</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 45">Table 45</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 48">Table 48</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 51">Table 51</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 54">Table 54</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 57">Table 57</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 60">Table 60</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 63">Table 63</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 66">Table 66</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 69">Table 69</a> ) <li>SIG (<a href="159379?table=Table 72">Table 72</a> ) </ul><br/> Inter-spectra data statistical covariances: <ul> <li>SIG (exclusive) versus DSIG/DM_BL_MINIMAX (exclusive) (<a href="159379?table=Table 73">Table 73</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 74">Table 74</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 75">Table 75</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 76">Table 76</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 77">Table 77</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 78">Table 78</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 79">Table 79</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 80">Table 80</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 81">Table 81</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 82">Table 82</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 83">Table 83</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus SIG (inclusive) (<a href="159379?table=Table 84">Table 84</a> ) <li>SIG (exclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 85">Table 85</a> ) <li>SIG (exclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 86">Table 86</a> ) <li>SIG (exclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 87">Table 87</a> ) <li>SIG (exclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 88">Table 88</a> ) <li>SIG (exclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 89">Table 89</a> ) <li>SIG (exclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 90">Table 90</a> ) <li>SIG (exclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 91">Table 91</a> ) <li>SIG (exclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 92">Table 92</a> ) <li>SIG (exclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 93">Table 93</a> ) <li>SIG (exclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 94">Table 94</a> ) <li>SIG (exclusive) versus SIG (inclusive) (<a href="159379?table=Table 95">Table 95</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 96">Table 96</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 97">Table 97</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 98">Table 98</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 99">Table 99</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 100">Table 100</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 101">Table 101</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 102">Table 102</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 103">Table 103</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 104">Table 104</a> ) <li>SIG (inclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 105">Table 105</a> ) <li>DSIG/DMT_BB4L (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 106">Table 106</a> ) <li>DSIG/DPT_BB (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 107">Table 107</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 108">Table 108</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 109">Table 109</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 110">Table 110</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 111">Table 111</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 112">Table 112</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 113">Table 113</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 114">Table 114</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 115">Table 115</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 116">Table 116</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 117">Table 117</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 118">Table 118</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 119">Table 119</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 120">Table 120</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 121">Table 121</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 122">Table 122</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 123">Table 123</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 124">Table 124</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 125">Table 125</a> ) <li>DSIG/Dn_JETS (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 126">Table 126</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 127">Table 127</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 128">Table 128</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 129">Table 129</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 130">Table 130</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 131">Table 131</a> ) <li>SIG (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 132">Table 132</a> ) <li>SIG (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 133">Table 133</a> ) <li>SIG (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 134">Table 134</a> ) <li>SIG (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 135">Table 135</a> ) <li>SIG (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 136">Table 136</a> ) <li>SIG (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 137">Table 137</a> ) <li>SIG (inclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 138">Table 138</a> ) <li>SIG (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 139">Table 139</a> ) <li>SIG (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 140">Table 140</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 141">Table 141</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 142">Table 142</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 143">Table 143</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 144">Table 144</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 145">Table 145</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 146">Table 146</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 147">Table 147</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 148">Table 148</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 149">Table 149</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 150">Table 150</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 151">Table 151</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 152">Table 152</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 153">Table 153</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 154">Table 154</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 155">Table 155</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 156">Table 156</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 157">Table 157</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 158">Table 158</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 159">Table 159</a> ) <li>1/SIG*DSIG/DMT_BB4L (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 160">Table 160</a> ) <li>1/SIG*DSIG/DPT_BB (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 161">Table 161</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 162">Table 162</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 163">Table 163</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 164">Table 164</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 165">Table 165</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 166">Table 166</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 167">Table 167</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 168">Table 168</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 169">Table 169</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 170">Table 170</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 171">Table 171</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 172">Table 172</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 173">Table 173</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 174">Table 174</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 175">Table 175</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 176">Table 176</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 177">Table 177</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 178">Table 178</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 179">Table 179</a> ) <li>1/SIG*DSIG/Dn_JETS (inclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 180">Table 180</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 181">Table 181</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 182">Table 182</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 183">Table 183</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 184">Table 184</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 185">Table 185</a> ) </ul>

Absolute differential cross-section as a function of $m^{bl}_{minimax}$ at particle level in the exclusive topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections. The covariance matrices are evaluated using pseudo-experiments for data and MC statistical uncertainties, and added to the individual covariance matrices for the remaining uncertainties, as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Covariance matrix of the absolute differential cross-section as function of $m^{bl}_{minimax}$ at particle level in the exclusive topology, accounting for the data statistical uncertainties.

More…

Observation of $t\bar{t}\gamma\gamma$ production at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-125, 2025.
Inspire Record 2930296 DOI 10.17182/hepdata.159299

This paper presents the first observation of top-quark pair production in association with two photons ($t\bar{t}\gamma\gamma$). The measurement is performed in the single-lepton decay channel using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider. The data correspond to an integrated luminosity of 140 fb$^{-1}$ recorded during Run 2 at a centre-of-mass energy of 13 TeV. The $t\bar{t}\gamma\gamma$ production cross section, measured in a fiducial phase space based on particle-level kinematic criteria for the lepton, photons, and jets, is found to be $2.42^{+0.58}_{-0.53}\, \text{fb}$, corresponding to an observed significance of 5.2 standard deviations. Additionally, the ratio of the production cross section of $t\bar{t}\gamma\gamma$ to top-quark pair production in association with one photon is determined, yielding $(3.30^{+0.70}_{-0.65})\times 10^{-3}$.

3 data tables

Measured $t\bar{t}\gamma\gamma$ production fiducial inclusive cross-section in single-lepton decay channel.

Measured ratio of production cross sections of $t\bar{t}\gamma\gamma$ to $t\bar{t}\gamma$ in single-lepton decay channel.

Summary of the relative impact of all the systematic uncertainties, in percentage, on the $t\bar{t}\gamma\gamma$ fiducial inclusive cross section and $R_{t\bar{t}\gamma\gamma/t\bar{t}\gamma}$ grouped into different categories. The category ‘Jet’ corresponds to the effect of JES, jet resolution and JVT uncertainties, ‘Photon’ and ‘Leptons’ include all experimental uncertainties related to photons and leptons (including trigger uncertainties), respectively.


Three-pion Bose-Einstein correlations measured in proton-proton collisions

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 08 (2025) 174, 2025.
Inspire Record 2928684 DOI 10.17182/hepdata.160692

A study on the Bose-Einstein correlations for triplets of same-sign pions is presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV, recorded by the LHCb experiment, corresponding to an integrated luminosity of 1.0 fb$^{-1}$. For the first time, the results are interpreted in the core-halo model. The parameters of the model are determined in regions of charged-particle multiplicity. This measurement provides insight into the nature of hadronisation in terms of coherence, showing a coherent emission of pions.

3 data tables

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 5-10.

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 11-20.

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 21-60.


First measurement of $b$-jet mass with and without grooming

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
Phys.Lett.B 869 (2025) 139854, 2025.
Inspire Record 2922449 DOI 10.17182/hepdata.159893

The LHCb collaboration presents a novel suite of heavy-flavour jet substructure measurements at forward rapidity in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The jet mass is a perturbatively calculable probe of the virtuality of hard-scattered quarks and gluons, connecting small-distance quantum chromodynamics (QCD) with long-distance experimental measurement. It becomes dominated by nonperturbative corrections at small values, presenting an excellent test of QCD across a broad range of energies. Measuring heavy-flavour jet mass with a theoretically unambiguous flavour definition for the first time probes the gluon splitting mechanism for heavy-flavour production and pushes tests of perturbative QCD to unprecedented theoretical precision. Utilising the soft drop jet-grooming technique to access the perturbative jet core further enhances constraints on first-principles theory. Measurements of the jet mass for jets containing fully reconstructed $B^\pm$ hadrons are reported with and without grooming. These results offer unparalleled tests of quark flavour and mass dependence in QCD and provide a baseline for future studies of heavy-flavour jet quenching in heavy-ion collisions.

42 data tables

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $10 < p_{\textrm{T,jet}} < 12$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $12 < p_{\textrm{T,jet}} < 15$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $15 < p_{\textrm{T,jet}} < 20$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

More…

Measurements of $W^+W^-$ production cross-sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 08 (2025) 142, 2025.
Inspire Record 2923238 DOI 10.17182/hepdata.156818

Measurements of $W^+W^-\rightarrow e^\pm νμ^\mp ν$ production cross-sections are presented, providing a test of the predictions of perturbative quantum chromodynamics and the electroweak theory. The measurements are based on data from $pp$ collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The number of events due to top-quark pair production, the largest background, is reduced by rejecting events containing jets with $b$-hadron decays. An improved methodology for estimating the remaining top-quark background enables a precise measurement of $W^+W^-$ cross-sections with no additional requirements on jets. The fiducial $W^+W^-$ cross-section is determined in a maximum-likelihood fit with an uncertainty of 3.1%. The measurement is extrapolated to the full phase space, resulting in a total $W^+W^-$ cross-section of $127\pm4$ pb. Differential cross-sections are measured as a function of twelve observables that comprehensively describe the kinematics of $W^+W^-$ events. The measurements are compared with state-of-the-art theory calculations and excellent agreement with predictions is observed. A charge asymmetry in the lepton rapidity is observed as a function of the dilepton invariant mass, in agreement with the Standard Model expectation. A CP-odd observable is measured to be consistent with no CP violation. Limits on Standard Model effective field theory Wilson coefficients in the Warsaw basis are obtained from the differential cross-sections.

63 data tables

Measured fiducial cross-section compared with theoretical predictions from MiNNLO+Pythia8, Geneva+Pythia8, Sherpa2.2.12, and MATRIX2.1. The predictions are based on the NNPDF3.0 (red squares) and NNPDF3.1 luxQED (blue dots) PDF sets. The nNNLO predictions include photon-induced contributions (always using NNPDF3.1 luxQED) and NLO QCD corrections to the gluon-gluon initial state. The $q\bar{q}\rightarrow WW$ predictions from MiNNLO, Geneva, and Sherpa2.2.12 are combined with a Sherpa2.2.2 prediction of gluon-induced production, scaled by an inclusive NLO K-factor of 1.7. Inner (outer) error bars on the theory predictions correspond to PDF (the combination of scale and PDF) uncertainties. The MATRIX nNNLO QCD $\otimes$ NLO EW prediction using NNPDF3.1 luxQED, the best available prediction of the integrated fiducial cross-section, is in good agreement with the measurement.

Fiducial differential cross-sections as a function of $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$. The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The right-hand-side axis indicates the integrated cross-section of the rightmost bin. The results are compared to fixed-order nNNLO QCD + NLO EW predictions of Matrix 2.1, with the NNLO + PS predictions from Powheg MiNNLO + Pythia8 and Geneva + Pythia8, as well as Sherpa2.2.12 NLO + PS predictions. The last three predictions are combined with Sherpa 2.2.2 for the $gg$ initial state and Sherpa 2.2.12 for electroweak $WWjj$ production. These contributions are modelled at LO but a NLO QCD $k$-factor of 1.7 is applied for gluon induced production. Theoretical predictions are indicated as markers with vertical lines denoting PDF, scale and parton shower uncertainties. Markers are staggered for better visibility.

Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$.

More…

Search for new physics in final states with semi-visible jets or anomalous signatures using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 012021, 2025.
Inspire Record 2918816 DOI 10.17182/hepdata.159761

A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.

6 data tables

Acceptance times efficiency weighted yields across the signal grid.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.

More…

Measurements of Higgs boson production via gluon-gluon fusion and vector-boson fusion using $H\rightarrow WW^\ast \rightarrow \ellν\ellν$ decays in $pp$ collisions with the ATLAS detector and their effective field theory interpretations

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 1403, 2025.
Inspire Record 2910761 DOI 10.17182/hepdata.157266

Higgs boson production cross-sections via gluon-gluon fusion and vector-boson fusion in proton-proton collisions are measured in the $H\rightarrow WW^\ast \rightarrow \ellν\ellν$ decay channel. The Large Hadron Collider delivered proton-proton collisions at a centre-of-mass energy of $13\,\textrm{TeV}$ between 2015 and 2018, which were recorded by the ATLAS detector, corresponding to an integrated luminosity of $140\,\textrm{fb}^{-1}$. The total cross-sections for Higgs boson production by gluon-gluon fusion and vector-boson fusion times the $H\rightarrow WW^\ast$ branching ratio are measured to be $12.4^{+1.3}_{-1.2}\,\textrm{pb}$ and $0.79^{+0.18}_{-0.16}\,\textrm{pb}$, respectively, in agreement with the Standard Model predictions. Higgs boson production is further characterised through measurements of Simplified Template Cross-Sections in a total of fifteen kinematic fiducial regions. A new scheme of kinematic fiducial regions has been introduced to enhance the sensitivity to CP-violating effects in Higgs boson interactions. Both schemes are used to constrain CP-even and CP-odd dimension-six operators in the Standard Model effective field theory.

75 data tables

Expected values and uncertainties for the $H \to WW^{\ast}$ cross-sections measured in each of the STXS categories, normalised to the corresponding SM predictions.

Best-fit values and uncertainties for the $H \to WW^{\ast}$ cross-sections measured in each of the STXS categories, normalised to the corresponding SM predictions.

Expected correlations between the production cross-sections multiplied by the $H \to WW^{\ast}$ branching ratio for each of the STXS categories.

More…

Revealing the microscopic mechanism of deuteron formation at the LHC

The ALICE collaboration Acharya, S. ; Agarwal, A. ; Aglieri Rinella, G. ; et al.
Nature 648 (2025) 306-311, 2025.
Inspire Record 2907586 DOI 10.17182/hepdata.165804

The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].

7 data tables

Measured $\pi^{+}$–d$\oplus\pi^{-}$–$\overline{\mathrm{d}}$ (left panel) correlation function.

Measured $\pi^{-}$–d$\oplus\pi^{+}$–$\overline{\mathrm{d}}$ (right panel) correlation function.

The extracted kinetic decoupling temperature is derived from $\pi^{+}$–d correlation functions.

More…

Evidence for the collective nature of radial flow in Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 136 (2026) 032301, 2026.
Inspire Record 2907010 DOI 10.17182/hepdata.158359

Anisotropic flow and radial flow are two key probes of the expansion dynamics and properties of the quark-gluon plasma (QGP). While anisotropic flow has been extensively studied, radial flow, which governs the system's radial expansion, has received less attention. Notably, experimental evidence for the global and collective nature of radial flow has been lacking. This Letter presents the first measurement of transverse momentum ($p_{\mathrm{T}}$) dependence of radial flow fluctuations ($v_0(p_{\mathrm{T}})$) over $0.5<p_{\mathrm{T}}<10$ GeV, using a two-particle correlation method in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The data reveal three key features supporting the collective nature of radial flow: long-range correlation in pseudorapidity, factorization in $p_{\mathrm{T}}$, and centrality-independent shape in $p_{\mathrm{T}}$. The comparison with a hydrodynamic model demonstrates the sensitivity of $v_0(p_{\mathrm{T}})$ to bulk viscosity, a crucial transport property of the QGP. These findings establish a new, powerful tool for probing collective dynamics and properties of the QGP.

99 data tables

Data from Figure 2, panel a, $v_{0}$

Data from Figure 2, panel c, upper panel, Normalized Covariance $\times 10^{3}$ in 0-5% Centrality

Data from Figure 2, panel c, lower panel, Normalized Covariance $\times 10^{3}$ in 50-60% Centrality

More…