None
No description provided.
No description provided.
No description provided.
We report the extraction of R = σ L / σ T from a global analysis of eight SLAC deep inelastic experiments on e-p and e-d scattering performed between 1970 and 1985. Values of R p , R d , and R d − R p are determined over the entire SLAC kinematic range: 0.1⩽ x ⩽0.9 and 0.6⩽ Q 2 ⩽20.0 (GeV/ c ) 2 . We find that R p = R d . Measured values of R ( x , Q 2 ) are larger than predictions based on perturbative QCD and on QCD with the inclusion of kinematic target mass terms, indicating that dynamical higher twist effects may be important in the SLAC kinematic range.
No description provided.
Data from experiment E-140.
Global extracting of R from all the experiments.
We report measurements of the ratio of the deep-inelastic electron-neutron to electron-proton differential cross sections in the threshold ( ω <3) region. The ratio was found to scale and to decrease monotically with decreasing ω . No violation of the quark model lower bound of 0.25 was observed in the ratio.
DATA ARE AVERAGED THROUG AVAILABLE KINEMATIC REGION.
We report measurements of the proton elastic form factors, G E p and G M p , extracted from electron scattering in the range 1⩽ Q 2 ⩽3(GeV/ c ) 2 . The uncertainties are <15% in G E p and <3% in G M p . The values of G E p are larger than indicated by most theoretical parameterizations, The ratio of Pauli and Dirac form factors, Q 2 F 2 p / F 1 p , is lower and demonstrates less Q 2 dependence than most of these parameterizations. Comparisons are made to theoretical models, including those based on perturbative QCD and vector-meson dominance.
No description provided.
No description provided.
No description provided.
We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.
2.6 pct rad length target.
2.6 pct rad length target.
2.6 pct rad length target.
We measured the differences in R=σLσT and the cross-section ratio σAσD in deep-inelastic electron scattering from D, Fe, and Au nuclei in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤5 (Gev/c)2. Our results for RA−RD are consistent with zero for all x and Q2, indicating that possible contributions to R from nuclear higher-twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The European Muon Collaboration effect is reconfirmed, and the low-x data from all recent experiments, at all Q2, are now in agreement.
No description provided.
No description provided.
No description provided.
The deep-inelastic electromagnetic structure functions of deuterium and aluminum nuclei have been measured. The kinematic dependence of the ratio of aluminum and deuterium structure functions is similar to the dependence of the ratio of steel and deuterium structure functions, and provides further evidence for the distortion of the quark momentum distributions of nucleons bound in a nucleus.
No description provided.
The deep-inelastic electromagnetic structure functions of steel, deuterium, and hydrogen nuclei have been measured with use of the high-energy electron beam at the Stanford Linear Accelerator Center. The ratio of the structure functions of steel and deuterium cannot be understood simply by corrections due to Fermi-motion effects. The data indicate that the quark momentum distributions in the nucleon become distorted in the nucleus. The present results are consistent with recent measurements with high-energy muon beams.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.
No description provided.
No description provided.
No description provided.