Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.
The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$<Q^{2}<$1.5 GeV$^{2}$/c$^{2}$ using the CLAS detector at Jefferson Laboratory. The data shows resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on $N^{*}$ and $\Delta$ states shows an evident discrepancy. A better description of the data is obtained either by a sizeable change of the properties of the $P_{13}$(1720) resonance or by introducing a new baryon state, not reported in published analyses.
Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.
Results are presented from analyses of jet data produced in pbarp collisions at sqrt{s} = 630 and 1800 GeV collected with the DO detector during the 1994-95 Fermilab Tevatron Collider run. We discuss details of detector calibration, and jet selection criteria in measurements of various jet production cross sections at sqrt{s} = 630 and 1800 GeV. The inclusive jet cross sections, the dijet mass spectrum, the dijet angular distributions, and the ratio of inclusive jet cross sections at sqrt{s} = 630 and 1800 GeV are compared to next-to-leading-order QCD predictions. The order alpha_s^3 calculations are in good agreement with the data. We also use the data at sqrt{s} = 1800 GeV to rule out models of quark compositeness with a contact interaction scale less than 2.2 TeV at the 95% confidence level.
The inclusive single jet cross section as a function of ET for ABS(ETARAP) < 0.5 at c.m. energy 1800 GeV.
The inclusive single jet cross section as a function of ET for ABS(ETARAP) 0.1 to 0.7 at c.m. energy 1800 GeV.
The inclusive single jet cross section as a function of ET and XT for ABS(ETARAP) < 0.5 at c.m. energy 630 GeV.
We present measurements of the differential cross section for the production of massive muon pairs in 225-GeV/c π−-nucleus collisions. We have used the data between the ψ and ϒ resonances in the framework of the Drell-Yan quark-antiquark annihilation model to predict the behavior of the cross section in the high-mass (mμμ>11 GeV/c2) region. The data are consistent with this extrapolation provided that a QCD leading-logarithmic evolution is included in the structure functions.
No description provided.
No description provided.
We present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back π 0 's of high transverse momentum ( p T ) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy √ s of the proton-proton collision. The cross-sections d σ d m at the values of √ s satisfy a scaling law of the form d σ d m = G(x) m n , where x = m(π 0 , π 0 )//trs and n = 6.5 ± 0.5 . We show from our data that the leading π 0 carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and we exploit this to determine the angular dependence of the hard-scattering subprocess. We also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelastic scattering and fragmentation functions from electron-positron annihilation.
No description provided.