The Ratio of the Nucleon Structure Functions f2 (n) for Iron and Deuterium

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 123 (1983) 275-278, 1983.
Inspire Record 188925 DOI 10.17182/hepdata.30745

Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.

1 data table

RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.


Measurement of the Interference Structure Function Xg(3) (X) in Muon - Nucleon Scattering

Argento, A. ; Benvenuti, A.C. ; Bollini, D. ; et al.
Phys.Lett.B 140 (1984) 142-144, 1984.
Inspire Record 195945 DOI 10.17182/hepdata.13025

The interference structure function xG 3 ( x ) has been measured for the first time scattering positive and negative muons of opposite helicity off a carbon target. The x dependence observed for Q 2 between 40 and 180 (GeV/c 2 ) is in good agreement with predictions of the quark-parton model. The measured ratio 2( a u Q u + a d Q d )/( Q u 2 + Q d 2 = 1.87 ± 0.25 (stat.) ± 0.24 (syst.) is consistent with the hypothesis of fractional quark charges and determines the sign of Q u − Q d to be positive.

3 data tables

No description provided.

No description provided.

No description provided.


Study of nuclear effects in the determination of nucleon structure functions with heavy targets

The Bologna-CERN-Dubna-Munich-Saclay collaboration Benvenuti, A.C. ; Bollini, D. ; Bruni, G. ; et al.
(1984) I.219, 1984.
Inspire Record 207569 DOI 10.17182/hepdata.39514

None

4 data tables

No description provided.

No description provided.

F2(FE)/F2(DEUT) AVERAGED OVER Q2.

More…

A Measurement of Nuclear Effects in Deep Inelastic Muon Scattering on Deuterium, Nitrogen and Iron Targets

The BCDMS collaboration Bari, G. ; Benvenuti, A.C. ; Bollini, D. ; et al.
Phys.Lett.B 163 (1985) 282, 1985.
Inspire Record 216817 DOI 10.17182/hepdata.30331

New data is presented on the ratios of structure functions F 2 ( x , Q 2 ) measured in deep inelastic muon scattering with deuterium, nitrogen, and iron targets. The existence of nuclear effects at large Q 2 is confirmed with improved systematic accuracy. The ratio F 2 Fe ( x ) F 2 D 2 ( x ) covers the range 0.20 ⩽ x ⩽ 0.70 and is in agreement with earlier measurements. The ratio F 2 N 2 ( x )/ F 2 D 2 ( x ) is measured over the range 0.08 ⩽ x ⩽ 0.70 and is compatible with unity below x = 0.3.

2 data tables

VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 46-106,46-106,53-150,53-200,70-200,80-200 RESPECTIVELY.

VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 26-40,26-61,30-80,30-106,30-106,30-150,30-200,35-200,46-200.


Measurement of the Ratios of Deep Inelastic Muon - Nucleus Cross-Sections on Various Nuclei Compared to Deuterium

The European Muon collaboration Ashman, J. ; Badelek, B. ; Baum, Guenter ; et al.
Phys.Lett.B 202 (1988) 603-610, 1988.
Inspire Record 260668 DOI 10.17182/hepdata.29991

Results are presented on the ratios of the deep inelastic muon-nucleus cross sections for carbon, copper and tin nuclei to those measured on deuterium. The data confirm that the structure functions of the nucleon measured in nuclei are different from those measured on quasi-free nucleons in deuterium. The kinematic range of the data is such that 〈 Q 2 〉 ∼ 5 GeV 2 at x ∼ 0.03, increasing to 〈 Q 2 〉 ∼ 35 GeV 2 for x ∼ 0.65. The measured cross section ratios are less than unity for x ≲ 0.05 and for 0.25 ≲ x < 0.7. The decrease of the ratio below unity for low x becomes larger as A increases as might be expected from nuclear shadowing. However, this occurs at relatively large values of Q 2 (∼ 5 GeV 2 ) indicating that such shadowing is of patrionic origin.

3 data tables

Q**2= 5.1,7.8,11.4,14.4,17.3,20.2,24.1,29.8,33.6 GEV**2.

Q**2= 4.4,8.4,13.5,17.9,21.1,24.4,29.5,34.0,40.4 GEV**2.

Q**2= 4.0,7.7,11.1,14.6,17.1,19.8,24.8,32.4 GEV**2.


Shadowing in deep inelastic muon scattering from nuclear targets

The European Muon collaboration Arneodo, M. ; Arvidson, A. ; Aubert, J.J. ; et al.
Phys.Lett.B 211 (1988) 493-499, 1988.
Inspire Record 262246 DOI 10.17182/hepdata.29908

Results are presented on the ratio of the inelastic muon-nucleus cross section per nucleon for carbon and calcium relative to that for deuterium. The measurements were made in the kinematic range of low x (0.003–0.1) and low Q 2 (0.3–3.2 GeV 2 ) at an incident muon energy of 280 GeV. The calcium to deuterium ratio shows a significant x dependence which is interpreted as a shadowing effect. No strong Q 2 dependence is observed. This suggests that the effect is due at least partially to parton interactions within the nucleus.

4 data tables

VALUES OF Q**2 AT EACH POINT ARE:- 0.52,0.60,0.61,0.61,0.63,0.68,0.90.

VALUES OF Q**2 AT EACH POINT ARE:- 1.09,1.25,1.54,1.74,1.76,1.68,1.71, 2.29.

VALUES OF X AT EACH POINT ARE:- 0.009,0.011,0.010,0.010,0.010,0.011, 0.013,0.015.

More…

Measurements of the Nucleon Structure Function in the Range 0.002-GeV**2 < x < 0.17-GeV**2 and 0.2-GeV**2 < q**2 < 8-GeV**2 in Deuterium, Carbon and Calcium

The European Muon collaboration Arneodo, M. ; Arvidson, A. ; Aubert, J.J. ; et al.
Nucl.Phys.B 333 (1990) 1-47, 1990.
Inspire Record 283347 DOI 10.17182/hepdata.33074

Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F 2 extracted from deuterium does not show a significant x dependence in the measured range of Q 2 and its Q 2 dependence is linear in log Q 2 . For calcium, a depletion of F 2 is observed at low x by 30% as compared with the values at x = 0.1 where F 2 (Ca) and F 2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q 2 . The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q 2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.

33 data tables

Deuterium data. Overall normalization error of 7 pct not included.

Deuterium data. Overall normalization error of 7 pct not included.

Deuterium data. Overall normalization error of 7 pct not included.

More…

Precision measurement of the structure function ratios F2 (He) / F2 (D), F2 (C) / F2 (D) and F2 (Ca) / F2 (D)

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Z.Phys.C 51 (1991) 387-394, 1991.
Inspire Record 314878 DOI 10.17182/hepdata.14935

We present the structure function ratiosF2He/F2D,F2C/F2D andF2Ca/F2D measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. The kinematic range 0.0035<x<0.65 and 0.5<Q2<90 GeV2 is covered. At lowx the three ratios are significantly smaller than unity and the size of the depletion grows with decreasingx and increasing mass numberA. At intermediatex the ratios show an enhancement of about 2% above unity for C/D and Ca/D, possibly less for He/D. There are indications of someQ2 dependence in the Ca/D data. The integrals of the structure function differencesF2A−F2D are discussed.

3 data tables

No description provided.

No description provided.

No description provided.


Precision measurement of structure function ratios for Li-6, C-12 and Ca-40

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Z.Phys.C 53 (1992) 73-78, 1992.
Inspire Record 319669 DOI 10.17182/hepdata.14706

The structure function ratiosF2C/F2Li,F2Ca/F2Li andF2Ca/F2C were measured in deep inelastic muonnucleus scattering at an incident muon energy of 90 GeV, covering the kinematic range 0.0085<x<0.6 and 0.8<Q2<17GeV2. The sensitivity of the nuclear structure functions to the size and mean density of the target nucleus is discussed.

3 data tables

Overall normalization error of 0.7%, due to uncertainties in target thickness, not included in the table.

Overall normalization error of 0.8%, due to uncertainties in target thickness, not included in the table.

Overall normalization error of 0.5%, due to uncertainties in target thickness, not included in the table.


Shadowing in the muon-xenon inelastic scattering cross-section at 490-GeV

The Fermilab E665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Lett.B 287 (1992) 375-380, 1992.
Inspire Record 341389 DOI 10.17182/hepdata.29153

Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for x Bj > s .001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x Bj , with a depletion in the kinematic range 0.001 < x Bj < 0.025 which exhibits no significant Q 2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.

2 data tables

Xenon structure function parameterized as being equal to the DEUT structurefunction.

Xenon structure function parameterized by an x-dependent shadowing factor times the DEUT structure function.