None
No description provided.
The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.
No description provided.
The differential cross section of pp scattering has been measured in the energy region 100–300 GeV and in the t -range 0.002 < | t | < 0.04 (GeV/| c ) 2 . The results on the real part of the scattering amplitude agrees with dispersion relation calculations. We also report on our determination of the slope parameter b together with an analysis of the world data of b for different hadrons and different t -values. It is shown that the data are consistent with the hypothesis of a universal shrinkage of the hadronic diffraction cone at high energies.
FROM FITS TO D(SIG)/DT IN THE COULOMB-NUCLEAR INTERFERENCE REGION, USING TOTAL CROSS SECTION VALUES FROM A. S. CARROLL ET AL., PL 80B, 423 (1979). ERRORS INCLUDE STATISTICAL ERRORS AND ERRORS IN NORMALIZATION AND IN SIG.
The differential cross section of π − p scattering has been measured in the energy region 100–345 GeV and in the t -range 0.002<| t |< 0.04 (GeV/ c ) 2 . The real part of the π − p scattering amplitude has been extracted from the data. The results show that the real part continues to increase with energy. The energy dependence of the slope parameter has also been determined. The shrinkage found expressed in terms of the slope of the pomeron trajectory is2 α ′ p =0.23±0.04 (GeV/ c ) −2 . This agrees with the energy dependence found at larger| t |-values.
RE(AMP)/IM(AMP) (REAL/IMAG) AND SLOPE PARAMETERS DEDUCED FROM A FIT TO D(SIG)/DT IN T HE COULOMB INTERFERENCE REGION (-T = 0.002 TO 0.04 GEV**2).
An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12<x<1.0 and pT<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Čerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-pT hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given.
No description provided.
No description provided.
No description provided.
Total and differential cross sections ofK*−(890),K*−(890),\(\bar K^{ * 0} \)(890),K*0(890),\(\bar K^{ * 0} \)(1430) andϱ0(770) produced inK−p interactions at 110 GeV/c are presented. The cross sections of the neutral resonances show a smooth increase with energy from 10 to 110 GeV/c incident momentum. For theK*+(890) and theK*0(890), i.e. the resonances with strangenessS=+1, this rise is quite significant: their cross sections practically double between 32 GeV/c and 110 GeV/c incidentK− momentum. About 50% of the neutral kaons and 30% of charged pions produced inK−p interactions at our energy are found to be decay products of the resonances considered.
No description provided.
No description provided.
No description provided.
The reaction π − p → K + K − π − p at 16 GeV/ c was studied in the CERN OMEGA spectrometer and a partial-wave analysis (PWA) of the low-mass (K + K − π − ) system (1.3–2.0 GeV) was performed. Only states in the unnatural spin-parity series produced by natural parity exchange are important and they approximately conserve t -channel helicity. The 1 + S K ∗ K wave dominates the low-mass (K + K − π − ) region. We observe an enhancement in 2 − P K ∗ K wave at a mass of 1.7 GeV, consistent with the decay of the A 3 resonance.
TOTAL ACCEPTANCE CORRECTED CROSS SECTION.
ACCEPTANCE CORRECTED.
MOST IMPORTANT CONTRIBUTING STATES CORRECTED FOR ACCEPTANCE.
Inclusive e+e− production in 17-GeV/c π−p collisions has been measured. An excess of e+e− pairs over those from known sources for 0.1<~mee<~0.6 GeV and x<0.5 was found. No evidence is found for enhancements in specific final states involving electrons and photons or charged particles. The photon multiplicity associated with these pairs is measured.
No description provided.
Exposures of the Ne/H 2 filled Big European Bubble Chamber (BEBC) to a dichromatic neutrino (antineutrino) beam produced by 400 GeV protons of the CERN SPS yielded ∼ 3100 events with a negative, and ∼ 1100 with a positive, muon. The neutrino flux is determined from the muon flux in the shielding. Assuming a linear energy dependence of the cross section, the values σ E between 20 and 200 GeV are found to be 0.657 ± 0.012 (stat.) ± 0.027 (syst.) and 0.309 ± 0.009 (stat.) ± 0.013 (syst.) cm 2 (GeV nucleon) −1 , for neutrinos and antineutrinos, respectively. The scaling variable q 2 E decreases significantly with increasing energy both for neutrinos and antineutrinos.
Measured charged current total cross section.
Measured charged current total cross section.
No description provided.
We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.
No description provided.
No description provided.
No description provided.