Showing 3 of 3 results
Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V2{SP} over V2{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V3{SP} over V3{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V4{SP} over V4{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V5{SP} over V5{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V6{SP} over V6{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V4 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V5 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V6 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V7 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-15%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-25%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-35%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-45%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-55%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-15%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-25%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-35%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-45%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-55%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 0-5%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 10-15%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 20-25%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 30-35%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 40-45%
The scaled-V2(PT) measured with the two particle correlation method in centrality bin 50-55%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 0-5%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 10-15%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 20-25%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 30-35%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 40-45%
The scaled-V3(PT) measured with the two particle correlation method in centrality bin 50-55%
The PT scale factor for V2(PT) as a funtion of collision centrality
The PT scale factor for V3(PT) as a funtion of collision centrality
The V2 scale factor as a funtion of collision centrality
The V3 scale factor as a funtion of collision centrality
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the event plane method as a function of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V2 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V3 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V4 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V5 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V6 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V7 harmonic measured with the event plane method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
Npart values are for the corresponding centrality at 200 GeV.
No description provided.
Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 2 < $\Delta\eta$ < 4.5 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 2 < $\Delta\eta$ < 4.5 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
The $\Delta\eta$ dependence of the near-side (|$\Delta\phi$| < $\pi/3$) correlated yield. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the away-side (|$\Delta\phi - \pi$| < $\pi/3$) correlated yield. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the ratio of the near- to away-side correlated yields in d+Au collisions. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the second harmonic Fourier coefficient, V2, in low ZDC-Au activity d+Au collisions.
The $\Delta\eta$ dependence of the second harmonic Fourier coefficient, V2, in high ZDC-Au activity d+Au collisions.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selections is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.