Date

Multiplicity of charged and neutral pions in deep-inelastic scattering of 27.5-GeV positrons on hydrogen.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 21 (2001) 599-606, 2001.
Inspire Record 554660 DOI 10.17182/hepdata.46860

Measurements of the individual multiplicities of pi+, pi- and pi0 produced in the deep-inelastic scattering of 27.5 GeV positrons on hydrogen are presented. The average charged pion multiplicity is the same as for neutral pions, up to approximately z= 0.7, where z is the fraction of the energy transferred in the scattering process carried by the pion. This result (below z= 0.7) is consistent with isospin invariance. The total energy fraction associated with charged and neutral pions is 0.51 +/- 0.01 (stat.) +/- 0.08 (syst.) and 0.26 +/- 0.01 (stat.) +/- 0.04 (syst.), respectively. For fixed z, the measured multiplicities depend on both the negative squared four momentum transfer Q^2 and the Bjorken variable x. The observed dependence on Q^2 agrees qualitatively with the expected behaviour based on NLO-QCD evolution, while the dependence on x is consistent with that of previous data after corrections have been made for the expected Q^2-dependence.

4 data tables

The measured PI0 multiplicity. Additional 9 PCT systematic error.

The measured multiplicity for charged pions, individually and the average. Additional 7 PCT systematic error.

The charged pion multiplicity as a function of x for four different z regions.

More…

The Q**2-dependence of the generalised Gerasimov-Drell-Hearn integral for the proton.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akushevich, I. ; et al.
Phys.Lett.B 494 (2000) 1-8, 2000.
Inspire Record 531949 DOI 10.17182/hepdata.46913

The dependence on Q^2 (the negative square of the 4-momentum of the exchanged virtual photon) of the generalised Gerasimov-Drell-Hearn integral for the proton has been measured in the range 1.2 GeV^2 < Q^2 < 12 GeV^2 by scattering longitudinally polarised positrons on a longitudinally polarised hydrogen gas target. The contributions of the nucleon-resonance and deep-inelastic regions to this integral have been evaluated separately. The latter has been found to dominate for Q^2 > 3 GeV^2, while both contributions are important at low Q^2. The total integral shows no significant deviation from a 1/Q^2 behaviour in the measured Q^2 range, and thus no sign of large effects due to either nucleon-resonance excitations or non-leading twist.

1 data table

The GDH integral as a function of Q2 in the resonance region (W**2 = 1 to 4.2 GeV**2), the measured region (W**2=4.2 to 45 GeV**2), and the total region (W**2= 1 to 45 GeV**2).


Multiplicity, Momentum and Angular Characteristics of $\pi^-$ Mesons for $p$ C, $d$ C, $\alpha$ C and C C Interactions at 4.2-{GeV}/$c$ Per Nucleon

The Alma Ata-Baku-Belgrade-Bucharest-Dubna-Kishinev-Leipzig- Moscow-Prague-Samarkand-Sofiya-Tashkent-Tbilisi-Ulan Bator-Varna collaboration Agakishiev, G.N. ; Akhababian, N. ; Armutliisky, D. ; et al.
Z.Phys.C 27 (1985) 177, 1984.
Inspire Record 203342 DOI 10.17182/hepdata.1999

Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.

18 data tables

No description provided.

No description provided.

No description provided.

More…