Showing 10 of 1422 results
We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 25 GeV.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 45 GeV.
Differential cross section in bins of ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 25 GeV.
Differential cross section in bins of ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 45 GeV.
Differential cross section in bins of ABS(YRAP(P=3)+YRAP(P=4))/2 for Z/GAMMA* transverse momentum > 25 GeV.
Differential cross section in bins of ABS(YRAP(P=3)+YRAP(P=4))/2 for Z/GAMMA* transverse momentum > 45 GeV.
Individual percentage contributions to the systematic error for the binning in PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 25 GeV.
Individual percentage contributions to the systematic error for the binning in PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 45 GeV.
Individual percentage contributions to the systematic error for the binning in ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 25 GeV.
Individual percentage contributions to the systematic error for the binning in ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 45 GeV.
Individual percentage contributions to the systematic error for the binning in ABS(YRAP(P=3)+YRAP(P=4))/2 for Z/GAMMA* transverse momentum > 25 GeV.
Individual percentage contributions to the systematic error for the binning in ABS(YRAP(P=3)+YRAP(P=4))/2 for Z/GAMMA* transverse momentum > 45 GeV.
This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for HMT events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter λ as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 71 ≤ n<sub>ch</sub> < 80 for the minimum-bias (MB) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 231 ≤ n<sub>ch</sub> < 300 for the high-multiplicity track (HMT) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative multiplicity region 3.09 < m<sub>ch</sub> ≤ 3.86. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative k<sub>T</sub> region 400 < k<sub>T</sub> ≤500 MeV. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
Systematic uncertainties (in percent) in the correlation strength, λ, and source radius, R, for the exponential fit of the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), for p<sub>T</sub> > 100 MeV at √s= 13 TeV for the MB and HMT events. The choice of MC generator gives rise to asymmetric uncertainties, denoted by uparrow and downarrow. This asymmetry propagates through to the cumulative uncertainty. The columns under ‘Uncertainty range’ show the range of systematic uncertainty from the fits in the various n<sub>ch</sub> intervals.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the average rescaled charged-particle multiplicity, m<sub>ch</sub>, for |η| < 2.5 and both p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and the high-multiplicity track (HMT) events. The parameters γ and δ resulting from a joint fit to the MB and HMT data are presented. The total uncertainties are shown.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the pair average transverse momentum, k<sub>T</sub>, for various functional forms and for minimum-bias (MB) and high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV. The total uncertainties are shown.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t,2}$ absolute differential cross-section at particle level.
$|{y}^{t,2}|$ absolute differential cross-section at particle level.
$m^{t\bar{t}}$ absolute differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y^{t\bar{t}}|$ absolute differential cross-section at particle level.
$\chi^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|\cos\theta^{*}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t}$ absolute differential cross-section at parton level.
$|y^{t}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t,2}$ absolute differential cross-section at parton level.
$|{y}^{t,2}|$ absolute differential cross-section at parton level.
$m^{t\bar{t}}$ absolute differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ absolute differential cross-section at parton level.
${\chi}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|\cos\theta^{*}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.
Distribution of the dijet invariant mass in CRZ. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the missing transverse energy in VRMET. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the dijet invariant mass in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the missing transverse energy in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the dijet invariant mass in the signal region, shown together with the parameterized background model (labelled "Bkg Model"). For reference, the MC prediction for the SM background is also shown (labelled "SM MC"). The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The signal region is defined to have dijet invariant mass > 20 GeV. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 65$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 95$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 110$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 20$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 30$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 65$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 95$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 110$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 20$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 30$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Unweighted and weighted number of events after each stage of selection for the NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}) = (45,10,80)$ GeV and the Z boson decaying to $e^{+}e^{-}, \;\mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The weighted number of events corresponds to an integrated luminosity of $139 \;\mathrm{fb}^{-1}$. The "skimming selection" required either a single electron or muon with $p_{T} > 100\;$ GeV or a pair of electrons or muons each with $p_{T} > 20\;$ GeV. The preselection requirements include the trigger, absence of a bad jet or bad muon, and two leptons, where a lepton is either an electron or a muon.
Acceptance and efficiency of this analysis for the signal models considered in this paper. The signal is an NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where the values of $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}})$ are varied. The Z boson decays to $e^{+}e^{-}, \mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The product of acceptance times efficiency is defined by the fraction of simulated events that pass all the selection criteria of this analysis. The acceptance is defined by the fraction of simulated events that pass all the selection criteria as applied to Monte Carlo truth-level quantities. The efficiency is then defined as the acceptance times efficiency, divided by the acceptance.
Acceptance and efficiency of this analysis for the signal models considered in this paper. The signal is an NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where the values of $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}})$ are varied. The Z boson decays to $e^{+}e^{-}, \mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The product of acceptance times efficiency is defined by the fraction of simulated events that pass all the selection criteria of this analysis. The acceptance is defined by the fraction of simulated events that pass all the selection criteria as applied to Monte Carlo truth-level quantities. The efficiency is then defined as the acceptance times efficiency, divided by the acceptance.
This paper presents a measurement of the electroweak production of two jets in association with a $Z\gamma$ pair, with the $Z$ boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139 fb$^{-1}$. The event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $Z\gamma$ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is 1.31$\pm$0.29 fb. An observed (expected) upper limit of 0.37 ($0.34^{+0.15}_{-0.10}$) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ($0.017^{+0.007}_{-0.005}$), assuming the Standard Model production cross-section for a 125 GeV Higgs boson.
Post-fit results for all $m_\text{jj}$ SR and CR bins in the EW $Z \gamma + \text{jets}$ cross-section measurement with the $\mu_{Z \gamma_\text{EW}}$ signal normalization floating. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit results for all DNN SR and CR bins in the search for $H \to \text{inv.}$ with the $\mathcal{B}_\text{inv}$ signal normalization set to zero. For the $Z_\text{Rev.Cen.}^\gamma$ CR, the third bin contains all events with DNN output score values of 0.6-1.0. The $H \to \text{inv.}$ signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. The post-fit uncertainties include statistical, experimental, and theoretical contributions.
Post-fit results for the ten [$m_\text{jj}$, $m_\text{T}$] bins constituting the SR and CRs defined for the dark photon search with the $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ signal is shown for two different mass hypotheses (125 GeV, 500 GeV) and scaled to a branching ratio of 2% and 1%, respectively. The post-fit uncertainties include statistical, experimental, and theoretical contributions.
Post-fit $m_\text{T}(\gamma, E_\text{T}^\text{miss})$ distribution in the inclusive signal region for the dark-photon search with the 125 GeV mass $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ decay signal is shown for two different mass hypotheses, 125 GeV and 500 GeV, and scaled to a $\mathcal{B}(H \to \gamma \gamma_\text{d})$ of 2% and 1%, respectively. Events with $m_\text{T}(\gamma, E_\text{T}^\text{miss})$ larger than the rightmost bin boundary are added to that bin.
The 95% CL upper limit on the Higgs boson production cross-section times branching ratio to $\gamma \gamma_\text{d}$ is shown for different VBF-produced scalar-mediator-mass hypotheses in the NWA. The theoretically predicted cross-section of a Higgs boson produced via VBF and with the $\mathcal{B}(H \to \gamma \gamma_\text{d}) =$ 5% is superimposed on the $\pm 1\sigma$ and $\pm 2\sigma$ NNLO QCD + NLO EW uncertainty band of the expected production cross-section limit.
Post-fit $m_\text{jj}$ distribution in the inclusive signal region. The Higgs boson invisible decay signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. Events with $m_\text{jj}$ larger than the rightmost bin boundary are added to that bin.
Post-fit $m_\text{jj}$ distribution in the one-lepton control region $W_{\ell \nu}^\gamma$ CR. Events with $m_\text{jj}$ larger than the rightmost bin boundary are added to that bin.
Post-fit $m_\text{T}$ distribution in the one lepton control region. Events with $m_\text{T}$ larger than the rightmost bin boundary are added to that bin.
Post-fit photon centrality distribution in the zero lepton signal plus control region with the $\mathcal{B}_\text{inv}$ signal normalization set to zero in the fit.
Post-fit photon $E_\text{T}$ distribution in the zero lepton signal region with the $\mathcal{B}_\text{inv}$ signal normalization set to zero in the fit.
Post-fit photon centrality distribution in the zero lepton signal plus control region resulting from the fit to the $m_\text{jj}$ distribution for EW $Z \gamma + \text{jets}$. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit photon $E_\text{T}$ distribution in the zero lepton signal region resulting from the fit to the $m_\text{jj}$ distribution for EW $Z \gamma + \text{jets}$. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit DNN output score distribution in the one lepton control region.
Yields for the EW $Z \gamma + \text{jets}$ process are shown after each selection along with relative and absolute signal acceptance efficiencies.
Yields for the 125 GeV Higgs boson with $\mathcal{B}_\text{inv.} =$ 1 signal produced by the vector boson fusion process in association with a final state photon are shown after each selection along with relative and absolute signal acceptance efficiencies.
Yields for the 125 GeV Higgs boson with $\mathcal{B}(H \to \gamma \gamma_\text{d}) =$ 1 signal produced by the vector boson fusion process are shown after each selection along with relative and absolute signal acceptance efficiencies.
The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.
Observed 95% CL exclusion limit for the Zprime-2HDM model.
Expected 95% CL exclusion limit for the Zprime-2HDM model.
Expected +- 1 sigma 95% CL exclusion limit for the Zprime-2HDM model.
Expected +- 2 sigma 95% CL exclusion limit for the Zprime-2HDM model.
Observed 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected +- 1 sigma 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected +- 2 sigma 95% CL exclusion limit for the 2HDM+a model ggF production.
Observed 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected +- 1 sigma 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected +- 2 sigma 95% CL exclusion limit for the 2HDM+a model bbA production.
Observed 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected +- 1 sigma 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected +- 2 sigma 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected and observed upper limits at 95% CL on cross-section for Zprime-2HDM model.
Expected and observed upper limits at 95% CL on cross-section for ggF producton in the 2HDM+a model.
Expected and observed upper limits at 95% CL on cross-section for bbA producton in the 2HDM+a model.
Model-independent upper limits on the visible cross-section $σ_{vis, $h(\bar{b})+DM} ≡ σ_{h+DM} \times B(h \to b\bar{b}) \times \mathcal{A} \times \epsilon$ in the different signal regions.
Theory cross-section for Zprime-2HDM model.
Theory cross-section for bbA production in the 2HDM+a model.
Theory cross-section for ggF production in the 2HDM+a model.
Distribution of Higgs boson candidate mass in 2b region with MET=150-200 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=200-350 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=350-500 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=500-750 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET > 750 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=150-200 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=200-350 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=350-500 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET > 500 GeV.
Yields in 1-lepton control region.
Yields in 2-lepton control region.
MET distribution in 2b region of the 0-lepton channel.
MET distribution in 3b region of the 0-lepton channel.
Expected signal yields after certain selection cuts in 2b region with MET=150-200 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=200-350 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=350-500 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=500-750 GeV.
Expected signal yields after certain selection cuts in 2b region with MET > 750 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=150-200 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=200-350 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=350-500 GeV.
Expected signal yields after certain selection cuts in 3b region with MET > 500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET > 750 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET>500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET > 750 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET > 500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET > 750 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET > 500 GeV.
Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.
The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.
List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.
The definitions of the trilepton signal regions: for the inclusive measurement, a combination of the regions with pseudo-continuous $b$-tagging 3$\ell$-Z-1$b$4$j$-PCBT and 3$\ell$-Z-2$b$3$j$-PCBT is used, whereas for the differential measurement, only the region 3$\ell$-Z-2$b$3$j$, with a fixed $b$-tagging WP is employed.
The definitions of the four tetralepton signal regions. The regions are defined to target different $b$-jet multiplicities and flavour combinations of the non-Z leptons.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$^{-1}$ is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain $b$-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26$^{+17}_{-15}$ fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0$\pm$2.4 fb.
The results of the fitted signal strength $\mu$ in the 1L/2LOS channel
The results of fitted inclusive ${t\bar{t}t\bar{t}}$ cross-section in the 1L/2LOS channel
Ranking of the nuisance parameters included in the fit according to their impact on the signal strength $\mu$. The impact of each nuisance parameter, $\Delta\mu$, is computed by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the nuisance parameter to its best-fit value, $\hat{\theta}$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta\theta$ ($\pm \Delta\hat{\theta}$).
The contribution from different systematic uncertainties to the measured $t\bar{t}t\bar{t}$ production cross section, grouped in categories.
The results of the fitted signal strength $\mu$ in the 1L/2LOS and 2LSS/3L combined channel.
The results of fitted inclusive ${t\bar{t}t\bar{t}}$ cross-section in the 1L/2LOS and 2LSS/3L combined channel.
Comparison between data and prediction for the distribution of the sum of the pseudo-continuous b-tagging score over the six jets with the highest score in the 1L,$\geq$9j,$\geq$3b region before the fit.
Comparison between data and prediction for the distribution of the sum of the pseudo-continuous b-tagging score over the six jets with the highest score in the 1L,$\geq$9j,$\geq$3b region after the fit.
Comparison between data and prediction for the distribution of the sum of the pseudo-continuous b-tagging score over the six jets with the highest score in the 2LOS,$\geq$7j,$\geq$3b region before the fit.
Comparison between data and prediction for the distribution of the sum of the pseudo-continuous b-tagging score over the six jets with the highest score in the 2LOS,$\geq$7j,$\geq$3b region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,$\geq$8j,$\geq$3b region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,$\geq$8j,$\geq$3b region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,$\geq$6j,$\geq$3b region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,$\geq$6j,$\geq$3b region after the fit.
Comparison between data and prediction for the distribution of number of jets in the 1L,$\geq$8j,$\geq$3b region before the fit.
Comparison between data and prediction for the distribution of number of jets in the 1L,$\geq$8j,$\geq$3b region after the fit.
Comparison between data and prediction for the distribution of number of jets in the 2LOS,$\geq$6j,$\geq$3b region before the fit.
Comparison between data and prediction for the distribution of number of jets in the 2LOS,$\geq$6j,$\geq$3b region after the fit.
Comparison between data and prediction for the distribution of b-jets multiplicity in the 1L,$\geq$8j,$\geq$3b region before the fit.
Comparison between data and prediction for the distribution of b-jets multiplicity in the 1L,$\geq$8j,$\geq$3b region after the fit.
Comparison between data and prediction for the distribution of b-jets multiplicity in the 2LOS,$\geq$6j,$\geq$3b region before the fit.
Comparison between data and prediction for the distribution of b-jets multiplicity in the 2LOS,$\geq$6j,$\geq$3b region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,9j,4b signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,9j,4b signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,9j,$\geq$5b signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,9j,$\geq$5b signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,3bL signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,3bL signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,3bH signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,3bH signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,4b signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,4b signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,$\geq$5b signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,$\geq$5b signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,7j,$\geq$4b signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,7j,$\geq$4b signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,$\geq$8j,3bL signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,$\geq$8j,3bL signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,$\geq$8j,3bH signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,$\geq$8j,3bH signal region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,$\geq$8j,$\geq$4b signal region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,$\geq$8j,$\geq$4b signal region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,3bV validation region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,3bV validation region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,9j,3bV validation region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,9j,3bV validation region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,3bV validation region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 1L,$\geq$10j,3bV validation region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,6j,3bV validation region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,6j,3bV validation region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,7j,3bV validation region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,7j,3bV validation region after the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,$\geq$8j,3bV validation region before the fit.
Comparison between data and prediction for the distribution of the BDT score in the 2LOS,$\geq$8j,3bV validation region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,3bL control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,3bL control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,3bH control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,3bH control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,9j,3bL control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,9j,3bL control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,9j,3bH control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,9j,3bH control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,4b control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,4b control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,$\geq$5b control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 1L,8j,$\geq$5b control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,6j,3bL control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,6j,3bL control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,6j,3bH control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,6j,3bH control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,7j,3bL control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,7j,3bL control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,7j,3bH control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,7j,3bH control region after the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,6j,$\geq$4b control region before the fit.
Comparison between data and prediction for the distribution of the scalar sum of all jet and lepton pT in the event in the 2LOS,6j,$\geq$4b control region after the fit.
A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 16$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 25$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 35$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 45$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 55$ GeV.
The fraction of $a$ boson decays matched to reconstructed displaced vertices passing all vertex selections in signal MC.
The extrapolated signal selection efficiency as a function of $c\tau_{a}$.
Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.
Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Systematic uncertainties for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Systematic uncertainties for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.