Production of proton-antiproton pairs by two-photon scattering has been observed at the electron-position storage ring PETRA. A total of eight proton-antiproton pairs have been identified using the time-of-flight technique. We have measured a total cross section of 4.5 ± 0.8 nb in the photon-photon c.m. energy range 2.0–2.6 GeV.
No description provided.
Additional systematic uncertainty 25% not included.
None
No description provided.
No description provided.
No description provided.
The reaction e p→e'p π 0 has been measured at W =2.55 GeV a fixed electron scattering angle of 10.3°. Two magnetic spectrometers and a lead glass hodoscope were used to detect all four final state particles. Electroproduction cross sections in the t range −0.15 to −1.4 (GeV/ c ) 2 at q 2 = −0.22, −0.55 and −0.85 (GeV/ c ) 2 are presented. Above | t |=0.6 (GeV/ c ) 2 the cross sections are considerably smaller than those for photoproduction.
NUMERICAL VALUES MEASURED FROM GRAPH IN PREPRINT BY TDBW.
The asymmetry of the cross sections for the photoproduction of π + mesons on polarized protons γ + p↑ → π + + n has been studied in the four-momentum transfer range 0.1 ⩽ | t | ⩽ 1.25 (GeV/ c ) 2 for photon energies of 2.5, 3.4 and 5.0 GeV. The measurements were carried out on a polarized butanol target. Both particles in the final state were detected: the pion by a magnetic spectrometer, the recoil nucleon in a scintillation counter matrix. The asymmetry was found to be negative with values around −0.4.
No description provided.
No description provided.
No description provided.
A comparison is made of the properties and production mechanisms of the π + ω and K − ω systems produced in the reactions π + p → π + ω p at 4, 5, 8 and 16 GeV/ c and K − p → K − ω p at 10 and 16 GeV/ c . In the π + ω case apeak is observed at 1.23 GeV (the B meson), while the K − ω mass distribution has a threshold enhancement. The cross section of the low mass (<2.0 GeV) π + ω system falls as p lab −2 , while that of the low mass (<2.0 GeV) K − ω system is almost constant with energy, indicating diffractive production of the K − ω system, but not of the πω system. Using a modified version of the Illinois partial-wave analysis program, it is found that the K − ω system is dominantly produced in the J P = 1 + state with small contributions of 0 − and 2 + , mainly by natural parity exchange - as is found for reactions such as K − p → (K − π + π − )p which are predominantly diffractive. For the π + ω system in the B mass region, J P = 1 + states, produced mainly by natural parity exchange are found; the contributions of 0 − P, 1 − P, 2 − P and 2 + D are consistent with zero. The 1 + D state occurs in the π + ω case but not in the K − ω system, nor in the K ππ − system produced in the K − p → K ππ p reaction.
No description provided.
No description provided.
FROM BREIT-WIGNER FIT TO B EVENTS AND CORRECTED FOR UNSEEN OMEGA DECAY MODES.
None
No description provided.
No description provided.
No description provided.