The Berkeley 15-in. hydrogen bubble chamber was used to investigate π+−p interactions at 600 MeV. There were 1738 good events, of which 71.9±0.8% were elastic. Partial waves up to at least D52 are required to fit the elastic angular distribution. The inelastic events were almost entirely single-pion production. The ratio (p+0)(n++) was found to be 5.5±0.8 which agrees well with 4.9 predicted by the (32, 32) pion-nucleon isobar model of Olsson and Yodh. It is also consistent with 6.5 predicted by Sternheimer and Lindenbaum. The pion momentum spectra and the π−π Q-value distributions also support the Olsson and Yodh model. Thus the (32, 32) pion-nucleon isobar is apparently the principal mechanism for single-pion production at 600 MeV. Angular distributions for the single-pion-production data are presented.
No description provided.
None
No description provided.
No description provided.
No description provided.
Seventeen differential cross sections of the pion-nucleon charge-exchange reaction have been measured at total center-of-mass energies of 1245, 1337, and 1363 MeV. Most measurements are based on the neutron-photon coincidence method, using carefully calibrated neutron counters and an efficient, large-area photon detector. The results are used to test the predictions of charge independence, with which they agree. The results also confirm the Ayed-Bareyre-Sonderegger phase-degeneracy hypothesis at θ̃π0=180°.
No description provided.
No description provided.
No description provided.
We have measured the cross section, the angular distribution, and the Λ polarization for the reaction π−p→ΛK0. A spark-chamber spectrometer was used to collect 8400 ΛK0 events at fourteen beam momenta near ΣK threshold. Our data do not show the prominent cross-section enhancement suggested by some previous experiments. However, detailed structure in the cross section and the angular distribution agrees well with a simple model which includes a cusp effect at ΣK threshold.
No description provided.
BACKWARD-FORWARD PRODUCTION ASYMMETRY.
AVERAGE LAMBDA POLARIZATION.
We have used an optical spark-chamber spectrometer to perform a systematic study of the reaction π−p→ΛK0 at beam momenta between 930 and 1130 MeV/c. The cross section, angular distribution, and Λ polarization have been measured. We present our complete data from a sample of 11 400 events along with Legendre polynomial coefficients for the angular distributions. No striking cross-section enhancement at ΣK threshold is observed, but there is evidence for a small cusp effect. A simple model which takes account of the ΣK channel provides a good fit to our data.
No description provided.
No description provided.
No description provided.
The differential cross sections of π−p→γn at center-of-mass energy Ẽ=1363, 1337, and 1245 MeV are presented. The angular distributions are compared with recent γn→π−p experiments. Though the cross sections for π−p→γn are somewhat lower than those for the inverse reaction, when all uncertainties are considered, we find that our data are in acceptable agreement at all three energies with the inverse reaction determined from π−π+ ratio measurements, in support of time-reversal invariance. The agreement with bubble-chamber measurements at Ẽ=1363 and 1337 MeV is less satisfactory. The isotensor dip test applied to our data is inconclusive. Our measurements are compared with many multipole analyses, disagreeing with most, in particular with pure fixed- t dispersion relation calculations. We find no evidence, in the sense suggested by Donnachie, for the classification of the P11(1470) resonance in an SU(3) antidecuplet. The data are consistent with a small radiative decay of the P11(1470) resonance, as predicted by quark models.
Axis error includes +- 6/6 contribution.
Axis error includes +- 4.5/4.5 contribution.
Axis error includes +- 4.2/4.2 contribution.
Differential cross-sections for negative pion radiative capture on protons at c.m. angles of 60°, 90°, and 120° have been measured at nine incident laboratory energies between 110 and 270 MeV. Comparison with measured cross-sections for pion photoproduction and with conventional multipole analyses shows neither evidence for a violation of time reversal invariance nor for an isotensor component of the electromagnetic current of hardrons.
Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).
Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).
Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).
Differential cross sections for π−p→π0n at five angles for 239, 264, 295, 323, and 375 MeV/c incident pions are presented. The measurements employ the neutron-photon coincidence method, using carefully calibrated neutron counters and an efficient, large-area photon detector. Good agreement is found with the results of the CERN phase-shift analysis.
Axis error includes +- 6.3/6.3 contribution.
Axis error includes +- 5.5/5.5 contribution.
Axis error includes +- 5.2/5.2 contribution.
Differential cross-section measurements are presented for π−p→γn at five energies around the p33(1232) resonance. A detailed comparison is made with γn→π−p deduced from γd experiments. In general, the results are in support of detailed balance. Using the Christ-Lee-Donnachie-Shaw model, our new data indicate that the T-violating phase in the isovector part of the M1+ multipole is less than 2°, which is a very sensitive test of time-reversal invariance. No evidence is found for a possible isotensor component of the electromagnetic current. Our data are compared to various multipole analyses. In general, the agreement is poor.
Axis error includes +- 6.3/6.3 contribution.
No description provided.
No description provided.
A comparison is made of the properties and production mechanisms of the π + ω and K − ω systems produced in the reactions π + p → π + ω p at 4, 5, 8 and 16 GeV/ c and K − p → K − ω p at 10 and 16 GeV/ c . In the π + ω case apeak is observed at 1.23 GeV (the B meson), while the K − ω mass distribution has a threshold enhancement. The cross section of the low mass (<2.0 GeV) π + ω system falls as p lab −2 , while that of the low mass (<2.0 GeV) K − ω system is almost constant with energy, indicating diffractive production of the K − ω system, but not of the πω system. Using a modified version of the Illinois partial-wave analysis program, it is found that the K − ω system is dominantly produced in the J P = 1 + state with small contributions of 0 − and 2 + , mainly by natural parity exchange - as is found for reactions such as K − p → (K − π + π − )p which are predominantly diffractive. For the π + ω system in the B mass region, J P = 1 + states, produced mainly by natural parity exchange are found; the contributions of 0 − P, 1 − P, 2 − P and 2 + D are consistent with zero. The 1 + D state occurs in the π + ω case but not in the K − ω system, nor in the K ππ − system produced in the K − p → K ππ p reaction.
No description provided.
No description provided.
FROM BREIT-WIGNER FIT TO B EVENTS AND CORRECTED FOR UNSEEN OMEGA DECAY MODES.