Significant production of (2030) is observed in the channel K − p → (Σ K − K + from a high statistics bubble chamber exposure at 4.2 GeV/ c . The mass and width are determined to be 2024 ± 2 MeV and 16 ± 5 MeV respectively. Apart from Σ K , the only other decay channel is found to be Λ K .
ASSUMING XI(2030) HAS ISOSPIN HALF, CROSS SECTIONS CORRECTED FOR UNOBSERVED NEUTRAL DECAYS.
We present differential cross sections and the Σ + polarization for the reactions K − p → π ∓ Σ ± using data from a high statistics bubble chamber experiment at 4.2 GeV/ c incident momentum. The statistical level allows a detailed analysis of these reactions over the whole t range. Several significant structures are observed. Comparisons are made with SU(3)-related reactions; for backward production of π − Σ + such a comparison shows good evidence for Δ exchange. The exotic forward peak in K − p → π + Σ − is definitely confirmed.
Axis error includes +- 5/5 contribution.
Axis error includes +- 5/5 contribution.
Axis error includes +- 5/5 contribution.
A πω enhancement at 1245 MeV is observed in the reaction K − p → Σ + π − ω. Its properties agree with those of a B meson produced by natural-parity exchange thus establishing a coupling of the B to a K K ∗ system.
No description provided.
THE DATA FOR B+ PRODUCTION ARE QUOTED FROM CHUNG ET AL., PR D11, 2426 (1975) USING THE SLAC 82 IN HBC. 1.08 < M(PI OMEGA) < 1.38 GEV.
Measurements of the polarised beam asymmetry parameter Σ for eta photoproduction from protons, have been carried out at incident energies of 2.5 GeV and 3.0 GeV, and for various t -values between −0.2 (GeV/c) 2 and −1.2 (GeV/c) 2 . The values of Σ are close to +1 for values of | t | less than 0.7 (GeV/c) 2 , showing that there can be little contribution from unnatural parity exchange in any Regge exchange model of the process, in disagreement with present theories. Differential cross sections for the process werre also measured, and are consistent with those from other experiments.
No description provided.
No description provided.
An experiment has been completed at the Daresbury synchrotron to measure the asymmetry in the photoproduction cross section of neutral pions on hydrogen, for photons polarised normal to and in the production plane. The source of polarised photons was coherent bremsstrahlung of electrons traversing the lattice structure of diamond and the polarisation P of the γ beam was calculated from the measured intensity of the coherent spike. The asymmetry parameter Σ, defined as Σ = ( σ ⊥ − σ |)/( σ ⊥ + σ |) where σ ⊥( σ |) are the cross sections for photons polarised perpendicular (parallel) to the production plane, has been measured over a range of photon energies from 1.2 to 2.8 GeV and over a range of − t (the square of the four-momentum transfer) from 0.13 (GeV/ c ) 2 to 1.4 (GeV/ c ) 2 . A marked energy variation in the value of Σ is found over the energy region 1.6–1.8 GeV.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Differential cross sections for the elastic scattering of negative kaons on protons are presented for 19 momenta between 1.732 GeV/ c and 2.466 GeV/ c . The general features of the cross sections are discussed.
No description provided.
No description provided.
No description provided.
Measurements of complete angular distributions of elastic K + p scattering at closely spaced incident momenta from 1368 to 2259 MeV/ c are presented and discussed. A PDP-8 computer controlled system of scintillation counters and core-readout wire spark chambers was used for the detection of elastic events. Diffractive behaviour is already present at the lowest measured momentum and becomes more prominent as the incident momentum increases. An expansion of the angular distributions in terms of Legendre polynomials shows no marked structure of the expansion coefficients as functions of the incident momentum. Our measurements can be adequately described by a number of existing phase shift solutions within 5% of their published values. Also Regge pole extrapolations represent our data satisfactorily.
No description provided.
No description provided.
No description provided.
Elastic electron proton scattering has been used to check the validity of the dipole fit of the proton form factors at momentum transfer between 0.05 and 0.30 (GeV/ c ) 2 . The general behaviour of the cross sections is in agreement with previous measurements and is close to the dipole predictions but there is the suggestion of some small amplitude deviations. It is speculated that these deviations may be related to similar effects in the proton formfactor derived from the ISR pp elastic scattering data via a Chou-Yang model.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
Results of fit of the combined data samples of Table 1 and Table 2. Data points was fitted by formula A + B*q**2 + C*sin(OMEGA*q**2 + PHI).
We measured the polarization parameter P in neutron-proton elastic scattering near the backward direction, using a polarized proton target. Measurements covered the range of incident neutron momenta from 1.0 to 5.5 GeV/ c and of four-momentum transfer squared u from −0.005 to −0.5 (GeV/ c ) 2 .
'1'. '2'. '3'. '4'.
No description provided.
No description provided.
An analysis of π−p two-prong interactions at 4.16 GeV/c is presented. The total two-prong cross section is 19.11±0.40 mb, based on 33 672 events. The elastic-scattering differential cross section shows an exponential behavior, Kexp(−AΔ2). With A=7.36±0.14 GeV−2, the "absorption parameters" are derived as C+=0.846±0.017 and γ+=0.040±0.001. The final-state π−π0p exhibits a strong ρ−, and the π−π+n a strong ρ0 and f0. The partial cross sections for the dominant resonant channels pρ−, π−Δ+(1236) (→pπ0), ρ0n, and f0n are 0.59±0.03, 0.17±0.01, 1.15±0.05, and 0.53±0.06 mb, respectively. The ρ− production and decay angular distributions do not agree with the predictions of the absorption-modified one-pion-exchange model. However, an inclusion of the contribution from ω exchange adequately accounts for the discrepancy. The ρ0 asymmetry is interpreted as a result of an interference of the resonant P wave and isospin-zero S wave, and the corresponding spin-density matrix elements are obtained. In the final state π−p+neutrals, a clear peak for the η meson and some evidence for the ω meson are seen.
Axis error includes +- 0.0/0.0 contribution (?////EVENT NORMALIZATION).