Using data collected from 1992 to 1995 with the ALEPH detector at LEP, a measurement of the colour factor ratios CA/CF and TF /CF and the strong coupling constant αs = CFαs(MZ)/(2π) has been performed by fitting theoretical predictions simultaneously to the measured differential two-jet rate and angular distributions in four-jet events. The result is found to be in excellent agreement with QCD, {fx4-1} Fixing CA/CF and TF/CF to the QCD values permits a determination of αs(MZ) and ηf, the number of active flavours. With this measurement the existence of a gluino with mass below 6.3 GeV/c2 is excluded at 95% confidence level.
Fit A: using all kinematical distributions. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.
Fit B: using all kinematical distributions, but QCD magnitudes for color factors are used: FA(DEF=NC/CF)) = 2.25 and TF/CF = 0.375. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.
Fit C: the QCD magnitudes for color factors and NF = 5 are used.
This letter describes a measurement of one of the anomalous triple gauge boson couplings using the first data recorded by the OPAL detector at LEP2. A total of 28 W-pair candidates have been selected for an integrated luminosity of 9.89±0.06 pb −1 recorded at a centre-of-mass energy of 161 GeV. We use these data to place constraints upon the coupling parameter α W φ . We analyse the predicted variation of the total cross-section for all observed channels and the distribution of kinematic variables in the semileptonic decay channels. We measure α W φ to be −0.61 −0.61 0.73 ±0.35, which is consistent with the Standard Model expectation of zero.
ALPHA-W-PHI is the triple gauge boson couplings (TGC). For definition see 'Physics at LEP2', Ed. G. Altarelli, CERN 96-01 (1996), vol. 1.
The total cross section and the forward-backward asymmetry for the process e + e − → μ + μ − ( nγ ) are measured in the energy range 20–136 GeV by reconstructing the effective centre-of-mass energy after initial state radiation. The analysis is based on the data recorded with the ALEPH detector at LEP between 1990 and 1995, corresponding to a total integrated luminosity of 143.5 pb −1 . Two different approaches are used: in the first one an exclusive selection of events with hard initial state radiation in the energy range 20–88 GeV is directly compared with the Standard Model predictions showing good agreement. In the second one, all events are used to obtain a precise measurement of the energy dependence of σ 0 and A FB 0 from a model independent fit, enabling constraints to be placed on models with extra Z bosons.
Exlclusive analysis from events with hard ISR.
Inclusive analysis from evvents with no specific selection of hard ISR.
Measurements of helicity density matrix elements have been made for the φ(1020), D*± and B* vector mesons in multihadronic Z0 decays in the OPAL experiment at LEP. Results for inclusive φ produced with high energy show evidence for production preferentially in the helicity zero state, with ρ00 = 0.54 ± 0.08, compared to the value of 1/3 expected for no spin alignment. The corresponding element for the D*± has a value of 0.40 ± 0.02, also suggesting a deviation from 1/3. The B* result, with ρ00 = 0.36 ± 0.09, is consistent with no spin alignment. Off-diagonal elements have been measured for the f and D* mesons; for the D* the element Re ρ1−1 is non-zero, indicating non-independent fragmentation of the primary quarks.
Helicity density matrices elements. Helicity beam frame is used.
Charge conjugated states are understood.
Helicity density matrices elements. Charge conjugated states are understood.
A measurement of the spectral functions of non-strange τ vector current final states is presented, using 124 358 τ pairs recorded by the ALEPH detector at LEP during the years 1991 to 1994. The spectral functions of the dominant two- and four-pion τ decay channels are compared to published results of e+e- annihilation experiments via isospin rotation. A combined fit of the pion form factor from τ decays and e+e- data is performed using different parametrizations. The mass and the width of the ρ±(770) and the ρ0(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be Mρ±(770) - Mρ0(770) = (0.0 ± 1.0) MeV/c2 and Γρ±(770) - Γρ0(770) = (0.1 ± 1.9) MeV/c2.
Invariant mass-squared distribution of the $\tau^- \to h^- \pi^0 \nu_{\tau}$ decay. The error has been set to zero if it is smaller than the point size. A dash indicates a data point lying outside the plot range.
Invariant mass-squared distributions of the $h^- 3\pi^0 \nu_{\tau}$ decay channel. The error has been set to zero if it is smaller than the point size.
Invariant mass-squared distribution of the $2h^- h^+ \pi^0 \nu_{\tau}$ decay channel. The error has been set to zero if it is smaller than the point size.
We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.
Determination of alpha_s.
Multiplicity and higher moments.
Thrust distribution.
In June 1996, the LEP centre-of-mass energy was raised to 161 GeV. Pair production of W bosons in e + e − collisions was observed for the first time by the LEP experiments. An integrated luminosity of 11 pb −1 was recorded in the ALEPH detector, in which WW candidate events were observed. In 6 events both Ws decay leptonically. In 16 events, one W decays leptonically, the other into hadrons. In the channel where both Ws decay into hadrons, a signal was separated from the large background by means of several multi-variate analyses. The W pair cross-section is measured to be σ WW = 4.23 ± 0.73 (stat.) ± 0.19 (syst.) pb. From this cross-section, the W mass is derived within the framework of the Standard Model: m W = 80.14 ± 0.34 (stat.) ± 0.09 (syst.) ± 0.03 (LEP energy) GeV/ c 2
No description provided.
The e + e − → W + W − cross section is measured in a data sample collected by ALEPH at a mean centre-of-mass energy of 172.09 GeV, corresponding to an integrated luminosity of 10.65 pb −1 . Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7±1.2 (stat.) ±0.3 (syst.) pb . The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W→hadrons) =67.7±3.1 (stat.) ±0.7 (syst.) % , allowing a determination of the CKM matrix element | V cs |=0.98±0.14(stat.)±0.03(syst.).
Cross sections for the different topologies.
Combined W+ W- cross section.
The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.
No description provided.
No description provided.
The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.
New measurements are presented of the photon structure function F_2^gamma(Q) at four values of Q^2 between 9 and 59 GeV/c^2 based on data collected with the OPAL detector at centre-of-mass energies of 161-172 GeV, with a total integrated luminosity of 18.1 pb^-1. The evolution of F_2^gamma with Q^2 in bins of x is determined in the Q^2 range from 1.86 to 135 GeV/c^2 using data taken at centre-of-mass energies of 91 GeV and 161-172 GeV. F_2^gamma is observed to increase with Q^2 with a slope of 1/alpha_em dF_2^gamma/dln(Q^2) = 0.10 +0.05 -0.03 measured in the range 0.1 < x < 0.6.
Measured values of F2 for the SW sample.
Measured values of F2 for the FD sample.
F2 for the full X range (0.1 to 0.6) as a function of Q**2. The full SW andFD sample points are tabulated for completeness but are not in the plot or fits . The first three points are previous OPAL data at sqrt(s) = 91 GeV (ZP C74(1997)33).