We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.
Determination of alpha_s.
Multiplicity and higher moments.
Thrust distribution.
Using data collected from 1992 to 1995 with the ALEPH detector at LEP, a measurement of the colour factor ratios CA/CF and TF /CF and the strong coupling constant αs = CFαs(MZ)/(2π) has been performed by fitting theoretical predictions simultaneously to the measured differential two-jet rate and angular distributions in four-jet events. The result is found to be in excellent agreement with QCD, {fx4-1} Fixing CA/CF and TF/CF to the QCD values permits a determination of αs(MZ) and ηf, the number of active flavours. With this measurement the existence of a gluino with mass below 6.3 GeV/c2 is excluded at 95% confidence level.
Fit A: using all kinematical distributions. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.
Fit B: using all kinematical distributions, but QCD magnitudes for color factors are used: FA(DEF=NC/CF)) = 2.25 and TF/CF = 0.375. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.
Fit C: the QCD magnitudes for color factors and NF = 5 are used.
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Charged particle sphericity distribution.
Charged particle aplanarity distribution.
Charged particle Thrust distribution.
The inclusive one- and two-jet production cross-sections are measured in collisions of quasi-real photons radiated from the LEP beams at e+e− centre-of-mass energies \(\sqrt{s}_{\rm ee}=130\) and 136 GeV using the OPAL detector at LEP. Hard jets are reconstructed using a cone jet finding algorithm. The differential jet cross-sections \({\rm d}\sigma /{\rm d}E_{T}^{\rm jet}\) are compared to next-to-leading order perturbative QCD calculations. Transverse energy flows in jets are studied separately for direct and resolved two-photon events.
Inclusive one-jet cross section.
One-jet rapidity distribution.
Inclusive two-jet cross section.
We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.
Determination of alpha_s.
Multiplicity and high moments.
Tmajor distribution.
Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.
B-jets are identified with the lepton-tag analysis.
The same kinematics as in the table 1.
Symmetric three-jet events are selected from hadronic Z0 decays such that the two lower energy jets are each produced at an angle of about 150° with respect to the highest energy jet. In some cases, a displaced secondary vertex is reconstructed in one of the two lower energy jets, which permits the other lower energy jet to be identified as a gluon jet through anti-tagging. In other cases, the highest energy jet is tagged as a b jet or as a light quark (uds) jet using secondary vertex or track impact parameter and momentum information. Comparing the two lower energy jets of the events with a tag in the highest energy jet to the anti-tagged gluon jets yields a direct comparison of b, uds and gluon jets, which are produced with the same energy of about 24 GeV and under the same conditions. We observe b jets and gluon jets to have similar properties as measured by the angular distribution of particle energy around the jet directions and by the fragmentation functions. In contrast, gluon jets are found to be significantly broader and to have a markedly softer fragmentation function than uds jets. For the k⊥ jet finder with ycut=0.02, we find $${«ngle n^{⤪ ch.}»ngle {⤪ gluon}⩈er «ngle n^{⤪ ch.}»ngle {⤪ b} {⤪ quark}}=1.089pm 0.024 ({⤪ stat.})pm0.024 ({⤪ syst.})$$ $${«ngle n^{⤪ ch.}»ngle {⤪ gluon}⩈er «ngle n^{⤪ ch.}»ngle {⤪ uds} {⤪ quark}}=1.390pm 0.038 ({⤪ stat.})pm0.032 ({⤪ syst.})$$ as the ratios of the mean charged particle multiplicity in the gluon jets compared to the b and uds jets. Results are also reported using the cone jet finder.
Two method of jet's reconstruction: 'kt' and 'cone' (see text).
Two method of jet's reconstruction: 'kt' and 'cone' (see text). QUARK meansUQ or DQ or SQ.
Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
A leading order determination of the gluon density in the proton has been performed in the fractional momentum range $1.9 \cdot 10~{-3} < x_{g/p} < 0.18$ by measuring multi-jet events from boson-gluon fusion in deep-inelastic scattering with the H1 detector at the electron-proton collider HERA. This direct determination of the gluon density was performed in a kinematic region previously not accessible. The data show a considerable increase of the gluon density with decreasing fractional momenta of the gluons.
FG is gluon structure function. XPARTON here means the X of the gluon. For the experimental definitions of the XPARTON see paper.
None
THETA is the angle between hadron and jet's axis. CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).