A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.
No description provided.
No description provided.
No description provided.
We report results on a precision measurement of the ratio R=σLσT in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences RA−RD and the cross section ratio σAσD between Fe and Au nuclei and the deuteron. Our results for RA−RD are consistent with zero for all x, Q2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σAσD from all recent experiments, at all x, Q2 values, are now in agreement.
No description provided.
No description provided.
No description provided.
A measurement of the proton structure function F 2 ( x , Q 2 ) is presented with about 1000 neutral current deep inelastic scattering events for Bjorken x in the range x ⋍ 10 −2 – 10 −4 and Q 2 > 5 GeV 2 . The measurement is based on an integrated luminosity of 22.5 nb −1 recorded by the H1 detector in the first year of HERA operation. The structure function F 2 ( x , Q 2 ) shows a significant rise with decreasing x .
No description provided.
No description provided.
No description provided.
Cross sections for deep-inelastic electron scattering from liquid deuterium, gaseous He4, and solid Be, C, Al, Ca, Fe, Ag, and Au targets were measured at the Stanford Linear Accelerator Center using electrons with energies ranging from 8 to 24.5 GeV. These data cover a range in the Bjorken variable x from 0.089 to 0.8, and in momentum transfer Q2 from 2 to 15 (GeV/c)2. The ratios of cross sections per nucleon (σAσd)is for isoscalar nuclei have been extracted from the data. These ratios are greater than unity in the range 0.1
Additional overall systematic error of 2.1 pct plus a target to target systematic error of 1 pct.
Additional overall systematic error of 2.1 pct plus a target to target systematic error of 2.1 pct.
Additional overall systematic error of 2.1 pct plus a target to target systematic error of 0.6 pct.
We report the extraction of R = σ L / σ T from a global analysis of eight SLAC deep inelastic experiments on e-p and e-d scattering performed between 1970 and 1985. Values of R p , R d , and R d − R p are determined over the entire SLAC kinematic range: 0.1⩽ x ⩽0.9 and 0.6⩽ Q 2 ⩽20.0 (GeV/ c ) 2 . We find that R p = R d . Measured values of R ( x , Q 2 ) are larger than predictions based on perturbative QCD and on QCD with the inclusion of kinematic target mass terms, indicating that dynamical higher twist effects may be important in the SLAC kinematic range.
No description provided.
Data from experiment E-140.
Global extracting of R from all the experiments.
None
No description provided.
No description provided.
No description provided.
We report new results on a precision measurement of the ratio R=σLσT and the structure function F2 for deep-inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R and F2 results are in good agreement with QCD predictions only when corrections for target-mass effects are included.
2.6 pct rad length target.
2.6 pct rad length target.
2.6 pct rad length target.