A search for new phenomena in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton--proton collision data with an integrated luminosity of $36.1 \; \mathrm{fb}^{-1}$, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair and the lightest neutralino ($\tilde{\chi}_1^0$) via one of two next-to-lightest neutralino ($\tilde{\chi}_2^0$) decay mechanisms: $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$, where the $Z$ boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the $Z$ boson mass; and $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$ with no intermediate $\ell^+\ell^-$ resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 TeV and 1.3 TeV at 95% confidence level, respectively.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-low. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1200 GeV and m(neutralino1) = 900 GeV is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-med. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1600 GeV and m(neutralino1) = 900 GeV, and from an on-$Z$ model with m(gluino) = 1640 GeV and m(neutralino1) = 1160 GeV, is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-high. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1800 GeV and m(neutralino1) = 500 GeV, and from an on-$Z$ model with m(gluino) = 1650 GeV and m(neutralino1) = 550 GeV, is overlaid.
Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the electromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Single $\pi^0$ photoproduction off quasi-free nucleons from the deuteron was experimentally studied. Nuclear effects were investigated by a comparison of the results for free protons and quasi-free protons and used as a correction for the quasi-free neutron data. The experiment was performed at the tagged photon beam of the Mainz MAMI accelerator for photon energies between 0.45~GeV and 1.4~GeV, using an almost $4\pi$ electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Reaction model predictions and PWA for $\gamma n\rightarrow n\pi^{0}$, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. The results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.
Excitation function at cos(Theta_pi0)cm = -0.95
Excitation function at cos(Theta_pi0)cm = -0.85
Excitation function at cos(Theta_pi0)cm = -0.75
A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb$^{-1}$ of 13 TeV proton-proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0$^{+6.0}_{-5.9}$ (stat.) $^{+4.0}_{-3.3}$ (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for Higgs boson transverse momentum ptH. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for the Higgs boson rapidity |yH|. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for the number of jets Njets with pT > 30 GeV. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.
Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.
The cross sections for $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, R$_\mathrm{AA}$, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, R$_\mathrm{AA}$($\Upsilon$(1S)) $>$ R$_\mathrm{AA}$($\Upsilon$(2S)) $>$ R$_\mathrm{AA}$($\Upsilon$(3S)) . The suppression of $\Upsilon$(1S) is larger than that seen at $\sqrt{s_{_\mathrm{NN}}} =$ 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the R$_\mathrm{AA}$ of $\Upsilon$(3S) integrated over $p_\mathrm{T}$ and rapidity is 0.094 at 95% confidence level, which is the strongest suppression observed for any hadron species in heavy ion collisions to date.
Differential cross sections of the Y(1S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross sections of the Y(1S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
Differential cross sections of the Y(2S) meson as a function of pT for pp collisions. The global uncertainty arises from the integrated luminosity uncertainty in pp collisions.
A measurement is presented of the associated production of a single top quark and a W boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV by the CMS Collaboration at the CERN LHC. The data collected corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed using events with one electron and one muon in the final state along with at least one jet originated from a bottom quark. A multivariate discriminant, exploiting the kinematic properties of the events, is used to separate the signal from the dominant $\mathrm{t\overline{t}}$ background. The measured cross section of 63.1 $\pm$ 1.8 (stat) $\pm$ 6.4 (syst) $\pm$ 2.1 (lumi) pb is in agreement with the standard model expectation.
The measured total cross sections based on the $\rm{e}^\pm \mu^\mp$ decay channel. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.
Summary of the individual contributions to the uncertainty in the $\sigma_{tW}$ measurement.
This paper presents a measurement of jet fragmentation functions in 0.49 nb$^{-1}$ of Pb+Pb collisions and 25 pb$^{-1}$ of $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in $pp$ collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The pseudorapidity distributions of dijets as a function of their average transverse momentum ($p_\mathrm{T}^\text{ave}$) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all $p_\mathrm{T}^\text{ave}$ intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken $x$ in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.
The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $55 < p_{\mathrm{T}}^{\mathrm{ave}} < 75$ GeV.
The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $55 < p_{\mathrm{T}}^{\mathrm{ave}} < 75$ GeV.
The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $75 < p_{\mathrm{T}}^{\mathrm{ave}} < 95$ GeV.
This paper presents several measurements of total production cross sections and total inelastic cross sections for the following reactions: $\pi^{+}$+C, $\pi^{+}$+Al, $K^{+}$+C, $K^{+}$+Al at 60 GeV/c, $\pi^{+}$+C and $\pi^{+}$+Al at 31 GeV/c . The measurements were made using the NA61/SHINE spectrometer at the CERN SPS. Comparisons with previous measurements are given and good agreement is seen. These interaction cross sections measurements are a key ingredient for neutrino flux prediction from the reinteractions of secondary hadrons in current and future accelerator-based long-baseline neutrino experiments.
Results of production cross section measurements on $\pi^+$ and $K^+$ beams. Measured channeles are $\pi^+$+C, $\pi^+$+Al, $K^+$+C, and $K^+$+Al at 60 GeV/c and $\pi^+$+C and $\pi^+$+Al at 31 GeV/c.
Results of inelastic cross section measurements on $\pi^+$ and $K^+$ beams. Measured channeles are $\pi^+$+C, $\pi^+$+Al, $K^+$+C, and $K^+$+Al at 60 GeV/c and $\pi^+$+C and $\pi^+$+Al at 31 GeV/c.
Production of $\pi^0$ and $\eta$ mesons has been measured at midrapidity in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. Measurements were performed in $\pi^0(\eta)\rightarrow\gamma\gamma$ decay channel in the 1(2)-20 GeV/$c$ transverse momentum range. A strong suppression is observed for $\pi^0$ and $\eta$ meson production at high transverse momentum in central Cu$+$Au collisions relative to the $p$$+$$p$ results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au$+$Au with comparable nuclear overlap. The $\eta/\pi^0$ ratio measured as a function of transverse momentum is consistent with $m_T$-scaling parameterization down to $p_T=$2 GeV/$c$, its asymptotic value is constant and consistent with Au$+$Au and $p$$+$$p$ and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in $e^+e^-$ collisions in a range of collision energies $\sqrt{s_{_{NN}}}=$3--1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu$+$Cu collisions either does not affect the jet fragmentation into light mesons or it affects the $\pi^0$ and $\eta$ the same way.
$\pi^0$ spectra from figure 3a from minimum bias Cu+Au collisions. Type A uncertainties are uncorrelated point-to-point. Type B uncertainties are correlated point-to-point. Type C uncertainties affect the scale of the data.
$\pi^0$ spectra from figure 3a from 0-10% central Cu+Au collisions. Type A uncertainties are uncorrelated point-to-point. Type B uncertainties are correlated point-to-point. Type C uncertainties affect the scale of the data.
$\pi^0$ spectra from figure 3a from 10-20% central Cu+Au collisions. Type A uncertainties are uncorrelated point-to-point. Type B uncertainties are correlated point-to-point. Type C uncertainties affect the scale of the data.