Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted $W$ or $Z$ boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.
Limit Plot
Limit Plot
Limit Plot
This paper describes precision measurements of the transverse momentum $p_\mathrm{T}^{\ell\ell}$ ($\ell=e,\mu$) and of the angular variable $\phi^{*}_{\eta}$ distributions of Drell-Yan lepton pairs in a mass range of 66-116 GeV. The analysis uses data from 36.1 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the LHC in 2015 and 2016. Measurements in electron-pair and muon-pair final states are performed in the same fiducial volumes, corrected for detector effects, and combined. Compared to previous measurements in proton-proton collisions at $\sqrt{s}=$7 and 8 TeV, these new measurements probe perturbative QCD at a higher centre-of-mass energy with a different composition of initial states. They reach a precision of 0.2% for the normalized spectra at low values of $p_\mathrm{T}^{\ell\ell}$. The data are compared with different QCD predictions, where it is found that predictions based on resummation approaches can describe the full spectrum within uncertainties.
Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.
Overview of the detector efficiency correction factors, $C_{Z}$ , for the electron and muon channels and their systematic uncertainty contributions.
Measured inclusive cross-section in the fiducial volume in the electron and muon decay channels at Born level and their combination as well as the theory prediction at NNLO in $\alpha_{s}$ using the CT14 PDF set.
The azimuthal anisotropy of charged particles produced in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of $165$ $\mathrm{nb}^{-1}$ that was collected in 2016. Azimuthal anisotropy coefficients, elliptic $v_2$ and triangular $v_3$, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum ($p_\mathrm{T}$) between $0.5$ and $50$ GeV. The $v_2$ results are also reported as a function of centrality in three different particle $p_\mathrm{T}$ intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet $p_\mathrm{T}$ thresholds are used. The anisotropies for particles with $p_\mathrm{T}$ less than about $2$ GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for $p_\mathrm{T}$ in the range $9$-$50$ GeV are not explained within current theoretical frameworks. In the $p_\mathrm{T}$ range $2$-$9$ GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.
Distribution of $v_{2}$ from MBT events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.
Distribution of $v_{2}$ from $p_{T}^{jet}>75$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.
Distribution of $v_{2}$ from $p_{T}^{jet}>100$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.
In this paper, a new technique for reconstructing and identifying hadronically decaying $\tau^+\tau^-$ pairs with a large Lorentz boost, referred to as the di-$\tau$ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-$\tau$ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $b\bar{b}$ pair and the other into a boosted $\tau^+\tau^-$ pair, with two hadronically decaying $\tau$-leptons in the final state. Using 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-$\tau$ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-$\tau$ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon$-$gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1$-$3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.
Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.
Distribution of $m^{vis}_{HH}$ after applying all the event selection that define the $HH$ SR, except the requirement on $m^{vis}_{HH}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. The $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ signal is overlaid for two resonance mass hypotheses with a cross-section set to the expected limit, while all backgrounds are pre-fit. The first and the last bins contains the under-flow and over-flow bin entries, respectively. The hatched bands represent combined statistical and systematic uncertainties.
Event yields of the various estimated backgrounds and data, computed in the signal region of the search for $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. Statistical and systematic uncertainties are quoted. The background yields and uncertainties are pre-fit and are found to be similar to those post-fit.
A search for Higgs boson pair production via vector-boson fusion (VBF) in the $b\bar{b}b\bar{b}$ final state is carried out with the ATLAS experiment using 126 fb$^{-1}$ of proton-proton collision data delivered at $\sqrt{s} = 13$ TeV by the Large Hadron Collider. This search is sensitive to VBF production of additional heavy bosons that may decay into Higgs boson pairs, and in a non-resonant topology it can constrain the quartic coupling between the Higgs bosons and vector bosons. No significant excess relative to the Standard Model expectation is observed, and limits on the production cross-section are set at the 95 % confidence level for a heavy scalar resonance in the context of an extended Higgs sector, and for non-resonant Higgs boson pair production. Interpretation in terms of the coupling between a Higgs boson pair and two vector bosons is also provided: coupling values normalised to the Standard Model expectation of $\kappa_{2V} < -0.43$ and $\kappa_{2V} > 2.56$ are excluded at the 95 % confidence level in data.
Acceptance x efficiency versus $\kappa_{2V}$ for non-resonant signal of $HH$.
Acceptance x efficiency versus resonance mass for both narrow and broad resonance $X$ to $HH$.
Post-fit mass distribution of the $HH$ candidates in the signal region. The expected background is shown after the profile-likelihood fit to data with the background-only hypothesis; the narrow-width resonant signal at 800 GeV and the non-resonant signal at $\kappa_{2V}$ = 3 are overlaid, both normalised to the corresponding observed upper limits on the cross-section.
This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 35.6 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one or at least two $b$-jets with transverse momentum $p_\textrm{T}>$ 20 GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on leading-order (LO) or next-to-leading-order (NLO) matrix elements interfaced with a parton-shower simulation and testing different flavour schemes for the choice of initial-state partons are compared with measured cross-sections. The 5-flavour number scheme predictions at NLO accuracy agree better with data than 4-flavour number scheme ones. The 4-flavour number scheme predictions underestimate data in events with at least one b-jet.
Measured fiducial cross sections for events with $Z(\rightarrow ll)\ge+1$ b-jets or with $Z(\rightarrow ll)\ge+2$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.
Differential fiducial cross section of the Z boson $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.
Differential fiducial cross section of the leading b-jet $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.
Results of a search for new particles decaying into eight or more jets and moderate missing transverse momentum are presented. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. The selection rejects events containing isolated electrons or muons, and makes requirements according to the number of $b$-tagged jets and the scalar sum of masses of large-radius jets. The search extends previous analyses both in using a larger dataset and by employing improved jet and missing transverse momentum reconstruction methods which more cleanly separate signal from background processes. No evidence for physics beyond the Standard Model is found. The results are interpreted in the context of supersymmetry-inspired simplified models, significantly extending the limits on the gluino mass in those models. In particular, limits on the gluino mass are set at 2 TeV when the lightest neutralino is nearly massless in a model assuming a two-step cascade decay via the lightest chargino and second-lightest neutralino.
Post-fit yields for data and prediction in each of the multi-bin signal regions for the 8 jet regions.
Post-fit yields for data and prediction in each of the multi-bin signal regions for the 9 jet regions.
Post-fit yields for data and prediction in each of the multi-bin signal regions for the 10 jet regions.
A search is presented for pair-production of long-lived neutral particles using 33 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of long-lived hidden-sector scalars with masses from 8 GeV to 400 GeV. The limits placed on several low-mass scalars extend previous exclusion limits in the range of proper lifetimes $c \tau$ from 5 cm to 1 m.
IDVx selection efficiency as a function of the radial decay position for $m_H = 125$ GeV.
IDVx selection efficiency as a function of the radial decay position for $m_s = 50$ GeV.
Observed $CL_S$ limits on $BR$ for $m_H = 125$ GeV.
To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of $22 ~\mu b^{-1}$ and $28~nb^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the $2^{nd}$-, 3$^{rd}$-, and 4$^{th}$-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model.
The $c_{k}$ for the 0.5-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 0.5-5 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 1-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.