A detailed analysis of the inclusive production of the vector mesonsφ,K*+,0(892)\(\bar K*^0 (892),\rho ^{ + ,0} ,\omega \) and the tensor mesonsK2*0)(1430) andf2(1270) inK+p interactions at 250 GeV/c is presented The data are compared with results at lower energies and with various quark-parton models. The production ofρ0,K*0(892) and\(\bar K*^0 (892)\) increases at the same rate as a function ofs, is concentrated in the central region and is not reproduced by the models. Production of the tensor mesonsf2(1270) andK2*0(1340) is suppressed relative toρ0 andK*0(892) by a factor of about 3.
No description provided.
No description provided.
Topological cross section for events containing K*(892)0 production.
We present inclusive ¶ and K *0 (892) cross sections and Feynman x -spectra in K + p collisions at 250 GeV/ c . In the K + fragmentation region, x > 0.2, the ratio of ¶ to K *0 (892) is used to estimate the strangeness suppression factor λ , with the result γ =0.17 ± 0.02 (stat ± 0.01 (syst). We see no evidence for an energy dependence of λ in the CM energy range 7.8 ≤ s ≤21.7 GeV.
RESULTS AT 32 AND 70 GEV INCLUDED FOR COMPARISON.
RESULTS AT 32 AND 70 GEV INCLUDED FOR COMPARISON.
RESULTS AT 32 AND 70 GEV INCLUDED FOR COMPARISON.
None
.
.
.
We present results on inclusive φ meson production in K + p interactions at 70 GeV/ c in the kaon fragmentation x >0.2 region. Comparison with other data on φ meson production in K ± and p induced reactions provides evidence that the strange valence-quark fragmentation or recombination processes play the dominant role in the K ± → φ transitions. Arguments are presented that the kaon valence strange s -quark carries a much higher momentum fraction than the u-quark. Evidence for the previously observed narrow φπ + state at mass ∼2.1 GeV is discussed.
.
.
.
The inclusive production of resonances is systematically studied in K + p interactions at 32 GeV/ c . Total production cross sections are given for three baryon resonances, five vector and three 2 + tensor mesons. We also compare the central and fragmentation components of the total production cross sections with quark model predictions.
No description provided.
No description provided.
No description provided.